Mechanical and Dynamic Properties of Biocomposites

Mechanical and Dynamic Properties of Biocomposites
Автор книги: id книги: 2070157     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 15430,2 руб.     (166,8$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Техническая литература Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9783527822348 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Mechanical and Dynamic Properties of Biocomposites A comprehensive review of the properties of biocomposites and their applications Mechanical and Dynamic Properties of Biocomposites offers a comprehensive overview of the mechanical and dynamic properties of biocomposites and natural fiber-reinforced polymer composites. This essential resource helps with materials selection in the development of products in the fields of automotive and aerospace engineering as well as the construction of structures in civil engineering.With contributions from a panel of experts in the field, the book reviews the mechanical and damping properties of lingo-cellulosic fibers and their composites. The authors highlight the factors that contribute to the improved properties and their advancements in modern industrialization.Besides, the book is designed to (a) introduce the mechanical and damping properties of lingo-cellulosic fibers and their composites, (b) factors that contribute to improvement in properties such as hybridization, chemical treatment of natural fibers, additive or fillers, etc. and (c) the real-time applications with case studies and future prospects.Key features:Presents viable alternatives to conventional compositesExamines the environmentally friendly and favorable mechanical properties of biocompositesReviews the potential applications of biocomposites in the fields of automotive, mechanical and civil engineeringBrings together in one comprehensive resource information found scattered across the professional literatureWritten for materials scientists, polymer chemists, chemists in industry, civil engineers, construction engineers, and engineering scientists in industry, Mechanical and Dynamic Properties of BIocomposites offers a compreshensive review of the properties and applications of biocomposites.

Оглавление

Группа авторов. Mechanical and Dynamic Properties of Biocomposites

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Mechanical and Dynamic Properties of Biocomposites

1 Mechanical Behaviors of Natural Fiber‐Reinforced Polymer Hybrid Composites

1.1 Introduction

1.2 Concept of Natural Fibers and/or Biopolymers: Biocomposites. 1.2.1 Natural Fiber‐Reinforced Polymer Composites or Biocomposites

1.2.2 Polymer Matrices

1.3 Hybrid Natural Fiber‐Reinforced Polymeric Biocomposites

1.4 Mechanical Behaviors of Natural Fiber‐Reinforced Polymer‐Based Hybrid Composites

1.4.1 Hybrid Natural FRP Composites

1.4.1.1 Bagasse/Jute FRP Hybrid Composites

1.4.1.2 Bamboo/MFC FRP Hybrid Composites

1.4.1.3 Banana/Kenaf and Banana/Sisal FRP Hybrid Composites

1.4.1.4 Coconut/Cork FRP Hybrid Composites

1.4.1.5 Coir/Silk FRP Hybrid Composites

1.4.1.6 Corn Husk/Kenaf FRP Hybrid Composites

1.4.1.7 Cotton/Jute and Cotton/Kapok FRP Hybrid Composites

1.4.1.8 Jute/OPEFB FRP Hybrid Composites

1.4.1.9 Kenaf/PALF FRP Hybrid Composites

1.4.1.10 Sisal/Roselle and Sisal/Silk FRP Hybrid Composites

1.5 Other Related Properties that Are Dependent on Mechanical Properties

1.5.1 Tribological Behavior

1.5.2 Thermal Behavior

1.6 Progress and Future Outlooks of Mechanical Behaviors of Natural FRP Hybrid Composites

1.7 Conclusions

References

2 Mechanical Behavior of Additive Manufactured Porous Biocomposites

2.1 Introduction

2.2 Human Bone

2.3 Porous Scaffold

2.4 Biomaterials for Scaffolds

2.4.1 Required Properties of Biomaterials

2.4.2 Types of Biomaterials. 2.4.2.1 Metals

2.4.2.2 Polymers

2.4.2.3 Ceramics

2.4.2.4 Composites

2.5 Additive Manufacturing of Porous Structures

2.5.1 Generic Process of AM

2.5.2 Powder Bed Fusion Process

2.5.3 Fused Deposition Modeling Process

2.5.4 Additive Manufacturing of Porous Biocomposites

2.6 Design of Porous Scaffold

2.6.1 Pore Size

2.6.2 Pore Geometry

2.6.3 Bioceramics as Reinforcement Material

2.7 Mechanical Characterization of Additive Manufactured Porous Biocomposites

2.8 Conclusion

References

3 Mechanical and Dynamic Mechanical Analysis of Bio‐based Composites

3.1 Introduction

3.2 Mechanical Properties of Macro‐scale Fiber

3.3 Mechanical Properties of Nano‐scale Fiber. 3.3.1 Factors Affecting Mechanical Properties of Bionanocomposites

3.3.1.1 Fabrication Method

3.3.1.2 Nanocellulose Loading

3.3.1.3 Nanocellulose Dispersion and Distribution

3.3.1.4 Nanocellulose Orientation

3.3.2 The Static Mechanical Properties of Bionanocomposites

3.4 Dynamic Mechanical Analysis (DMA) of Biocomposites

3.4.1 Single Fiber

3.4.1.1 Sugar Palm

3.4.1.2 Bamboo

3.4.1.3 Kenaf

3.4.1.4 Alfa

3.4.1.5 Carnauba

3.4.1.6 Pineapple Leaf Fiber (PALF)

3.4.1.7 Oil Palm Fiber (OPF)

3.4.1.8 Red Algae

3.4.1.9 Banana

3.4.1.10 Flax

3.4.1.11 Jute

3.4.1.12 Hemp

3.4.1.13 Waste Silk Fiber

3.4.1.14 Henequen

3.4.2 Hybrid Fiber

3.4.2.1 Sisal/Oil Palm

3.4.2.2 Coir/PALF

3.4.2.3 Kenaf/PALF

3.4.2.4 Palmyra Palm Leaf Stalk Fiber (PPLSF)/Jute

3.4.2.5 Oil Palm Empty Fruit Bunch (OPEFB)/Cellulose

3.5 Dynamic Mechanical Properties of Bionanocomposites

3.5.1 The Dynamic Mechanical Properties of Bionanocomposites

3.6 Conclusion

References

4 Physical and Mechanical Properties of Biocomposites Based on Lignocellulosic Fibers

4.1 Introduction

4.2 Major Factors Influencing Quality of Biocomposites

4.2.1 Selection of Natural Fibers

4.2.2 Effect of Fiber/Particle Size on the Physical and Mechanical Properties of Biocomposites

4.2.3 Effect of Filler Content on the Mechanical Properties of Biocomposites

4.2.4 Compatibility Between Natural Fiber/Polymer Matrix and Surface Modification

4.2.5 Type of Polymer Matrix

4.2.6 Processing Conditions in the Manufacture of Biocomposite

4.2.7 Presence of Voids and Porosity

4.2.8 Nanocellulose‐Reinforced Biocomposites

4.2.8.1 Preparation and Properties of Cellulose Nanofibers

4.2.8.2 Industrial Applications of Cellulose Nanofibers

4.3 Conclusions

References

5 Machinability Analysis on Biowaste Bagasse‐Fiber‐Reinforced Vinyl Ester Composite Using S/N Ratio and ANOVA Method

5.1 Introduction

5.2 Experimental Methodology. 5.2.1 Materials

5.2.2 Specimen Preparation

5.2.3 Machining of the Composite Specimen

5.2.4 Selection of Orthogonal Array

5.2.5 Development of Multivariable Nonlinear Regression Model

5.3 Results and Discussion. 5.3.1 Influence of Machining Parameters on Thrust Force and Torque

5.3.2 S/N Ratio

5.3.3 ANOVA

5.3.4 Correlation of Machining Parameters with Responses

5.3.5 Confirmation Test

5.4 Conclusions

References

6 Mechanical and Dynamic Properties of Kenaf‐Fiber‐Reinforced Composites

6.1 Introduction

6.2 Mechanical Properties of Kenaf‐Fiber‐Reinforced Polymer Composite

6.3 Dynamic Mechanical Analysis

6.4 Storage Modulus (E′) of Kenaf Fiber–Polymer Composite

6.5 Loss Modulus (E″) of Kenaf Fiber–Polymer Composite

6.6 Damping Factor (Tan δ)

6.7 Glass Transition Temperatures (Tg)

6.8 Conclusion

References

7 Investigation on Mechanical Properties of Surface‐Treated Natural Fibers‐Reinforced Polymer Composites

7.1 Introduction

7.2 Mechanical Properties of Natural Fibers

7.3 Drawbacks of Natural Fibers

7.4 Surface Modification of Natural Fibers. 7.4.1 Chemical Treatment

7.4.2 Alkaline Treatment

7.4.3 Silane Treatment

7.4.4 Acetylation Treatment

7.4.5 Benzylation Treatment

7.4.6 Peroxide Treatment

7.5 Maleated Coupling Agents

7.5.1 Isocyanate

7.5.2 Permanganate Treatment

7.5.3 Stearic Acid Treatment

7.5.4 Physical Treatment

7.5.5 Plasma Treatment

7.5.6 Corona Treatment

7.5.7 Ozone Treatment

7.6 Summary

References

8 Mechanical and Tribological Characteristics of Industrial Waste and Agro Waste Based Hybrid Composites

8.1 Introduction

8.2 Materials and Methods

8.2.1 Scanning Electron Microscopy (SEM)

8.3 Result and Discussion. 8.3.1 Effect of Chemical Treatment on Fiber

8.3.2 Mechanical Behavior

8.3.3 Erosion Behavior

8.3.3.1 Effect of Fiber Treatment on Erosion Rate

8.3.3.2 Effect of Red Mud Addition on Erosion Rate

8.3.3.3 Effect of Impact Angle on Erosion Rate

8.4 Conclusion

References

9 Dynamic Properties of Kenaf‐Fiber‐Reinforced Composites

9.1 Introduction

9.2 Manufacturing Techniques for Kenaf‐Fiber‐Reinforced Composites

9.3 Characterization

9.3.1 Dynamic Mechanical Analysis (DMA)

9.3.2 Thermogravimetric Analysis (TGA)

9.3.3 Vibration‐Damping Testing

9.3.4 Acoustic Properties:

9.4 Overview of the Dynamics Properties of Kenaf‐Fiber‐Reinforced Composite

9.4.1 Dynamic Mechanical Properties (DMA)

9.4.2 TGA Analysis of Composites:

9.4.3 Acoustic Properties

9.5 Conclusion

References

10 Effect of Micro‐Dry‐Leaves Filler and Al‐SiC Reinforcement on the Thermomechanical Properties of Epoxy Composites

10.1 Introduction

10.2 Materials and Methods. 10.2.1 Materials

10.2.2 Production of Al‐SiC Nanoparticles

10.2.3 Fabrication of Epoxy Composites

10.2.4 Epoxy Composite Characterization. 10.2.4.1 Porosity, Density, and Volume Fraction

10.2.4.2 Tensile Properties

10.2.4.3 Flexural Properties

10.2.4.4 Impact Strength

10.2.4.5 Dynamic Mechanical Analysis (DMA)

10.2.4.6 Morphological Properties

10.3 Results and Discussion. 10.3.1 Quality of Fabrication and Volume Fraction of Epoxy Composites

10.3.2 Tensile Characteristics

10.3.3 Flexural Characteristics

10.3.4 Impact Characteristics

10.3.5 Dynamic Mechanical Analysis

10.3.5.1 Storage Modulus

10.3.5.2 Loss Modulus

10.3.5.3 Damping Factor

10.3.6 Morphological Characteristics

10.4 Conclusion

References

11 Effect of Fillers on Natural Fiber–Polymer Composite: An Overview of Physical and Mechanical Properties

11.1 Introduction

11.2 Influence of Cellulose Micro‐filler on the Flax, Pineapple Fiber‐Reinforced Epoxy Matrix Composites

11.3 Influence of Sugarcane Bagasse Filler on the Cardanol Polymer Matrix Composites

11.4 Influence of Sugarcane Bagasse Filler on the Natural Rubber Composites

11.5 Influence of Fly Ash on Wood Fiber Geopolymer Composites

11.6 Influence of Eggshell Powder/Nanoclay Filler on the Jute Fiber Polyester Composites

11.7 Influence of Portunus sanguinolentus Shell Powder on the Jute Fiber–Epoxy Composite

11.8 Influence of Nano‐SiO2 Filler on the Phaseolus vulgaris Fiber–Polyester Composite

11.9 Influence of Aluminum Hydroxide (Al(OH)3) Filler on the Vulgaris Banana Fiber–Epoxy Composite

11.10 Influence of Palm and Coconut Shell Filler on the Hemp–Kevlar Fiber–Epoxy Composite

11.11 Influence of Coir Powder Filler on Polyester Composite

11.12 Influence of CaCO3 (Calcium Carbonate) Filler on the Luffa Fiber–Epoxy Composite

11.13 Influence of Pineapple Leaf, Napier, and Hemp Fiber Filler on Epoxy Composite

11.14 Influence of Dipotassium Phosphate Filler on Wheat Straw Fiber–Natural Rubber Composite

11.15 Influence of Groundnut Shell, Rice Husk, and Wood Powder Fillers on the Luffa cylindrica Fiber–Polyester Composite

11.16 Influence of Rice Husk Fillers on the Bauhinia vahlii – Sisal Fiber–Epoxy Composite

11.17 Influence of Areca Fine Fiber Fillers on the Calotropis gigantea Fiber Phenol Formaldehyde Composite

11.18 Influence of Tamarind Seed Fillers on the Flax Fiber–Liquid Thermoplastic Composite

11.19 Influence of Walnut Shell, Hazelnut Shell, and Sunflower Husk Fillers on the Epoxy Composites

11.20 Influence of Waste Vegetable Peel Fillers on the Epoxy Composite

11.21 Influence of Clusia multiflora Saw Dust Fillers on the Rubber Composite

11.22 Influence of Wood Flour Fillers on the Red Banana Peduncle Fiber Polyester Composite

11.23 Influence of Wood Dust Fillers (Rosewood and Padauk) on the Jute Fiber–Epoxy Composite

11.24 Summary

11.25 Conclusions

References

12 Temperature‐Dependent Dynamic Mechanical Properties and Static Mechanical Properties of Sansevieria cylindrica Reinforced Biochar‐Tailored Vinyl Ester Composite

12.1 Introduction

12.2 Materials and Method. 12.2.1 Materials

12.2.2 Biochar Characterization. 12.2.2.1 Particle Size Analyzer

12.2.2.2 X‐ray Diffraction

12.2.2.3 FTIR Spectroscopy

12.2.3 Composite Fabrication

12.2.4 Dynamic Mechanical Analysis (DMA)

12.2.5 Tensile Testing

12.2.6 Flexural Testing

12.2.7 Impact Testing

12.2.8 Scanning Electron Microscopy

12.3 Results and Discussion. 12.3.1 Biochar Characterization. 12.3.1.1 Particle Analyzer

12.3.1.2 Fourier Transform (InfraRed) Spectroscopy

12.3.1.3 X‐ray Diffraction

12.3.2 Dynamic Mechanical Analysis

12.3.3 Tensile Tests

12.3.4 Flexural Tests

12.3.5 Impact Tests

12.4 Conclusions

References

13 Development and Sustainability of Biochar Derived from Cashew Nutshell‐Reinforced Polymer Matrix Composite

13.1 Introduction

13.2 Materials and Methods

13.2.1 Biochar Preparation

13.2.2 Composite Preparation

13.2.3 Mechanical Testing

13.3 Results and Discussion. 13.3.1 Tensile Strength

13.3.2 Flexural Strength

13.3.3 Impact Strength

13.3.4 Hardness

13.3.5 Failure Analysis of Cashew Nutshell Waste Extracted Biochar‐Reinforced Polymer Composites. 13.3.5.1 Tensile Strength Failure Analysis

13.3.5.2 Flexural Strength Failure Analysis

13.3.5.3 Impact Strength Failure Analysis

13.4 Conclusion

References

14 Influence of Fiber Loading on the Mechanical Properties and Moisture Absorption of the Sisal Fiber‐Reinforced Epoxy Composites

14.1 Introduction

14.1.1 Sisal Fibers

14.1.2 Fiber Parameters Affecting Mechanical Properties of the Composite

14.2 Materials and Methods. 14.2.1 Materials

14.2.2 Fabrication Method

14.2.3 Characterization

14.2.3.1 Tensile Test

14.2.3.2 Flexural Test

14.2.3.3 Moisture Diffusion

14.3 Results and Discussion

14.3.1 Tensile Properties

14.3.2 Flexural Properties

14.3.3 Water Absorption

14.4 Conclusion

References

15 Mechanical and Dynamic Properties of Ramie Fiber‐Reinforced Composites

15.1 Introduction

15.2 Mechanical Strength of Ramie Fiber Composites

15.3 Dynamic Properties of Ramie Fiber Composites

15.3.1 Temperature Influence

15.3.2 Storage Modulus

15.3.3 Viscous Modulus

15.3.4 Damping Factor

15.4 Conclusion

References

16 Fracture Toughness of the Natural Fiber‐Reinforced Composites: A Review

16.1 Introduction

16.1.1 Fracture Toughness Tests

16.1.2 Mode‐I Loading. 16.1.2.1 Double Cantilever Beam Method (DCB)

16.1.2.2 Compact Tensile Method (CT)

16.1.2.3 Single‐Edge Notch Bend Test (SENB)

16.1.3 Mode‐II Loading. 16.1.3.1 End‐Notched Flexure Test (ENF)

16.1.4 Mode‐III Loading. 16.1.4.1 Split Cantilever Beam Method (SCB)

16.1.4.2 Edge Crack Torsion Test (ECT)

16.1.4.3 Mixed Mode Bend Test (MMB)

16.2 Factors Affecting the Fracture Energy of the Biocomposites. 16.2.1 Fiber Parameters

16.2.2 Hybridization

16.2.3 Fiber Treatment

16.2.4 Aging

16.3 Conclusion

Acknowledgments

References

17 Dynamic Mechanical Behavior of Hybrid Flax/Basalt Fiber Polymer Composites

17.1 Introduction

17.2 Materials and Methods. 17.2.1 Materials

17.2.2 Fabrication of Composites

17.2.3 Dynamic Mechanical Analysis

17.3 Result and Discussion. 17.3.1 Damping Factor (Tan δ) Response of Basalt/Flax Fiber Composite

17.3.2 Storage Modulus (E′) Response of Basalt/Flax Fiber Composite

17.3.3 Loss Modulus Performance of Basalt/Flax Fiber Composites

17.4 Conclusions

Acknowledgments

References

Index. a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

v

w

y

z

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Edited by

Senthilkumar Krishnasamy

.....

Rajini Nagarajan

Senthil Muthu Kumar Thiagamani

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Mechanical and Dynamic Properties of Biocomposites
Подняться наверх