Modern Trends in Structural and Solid Mechanics 3

Modern Trends in Structural and Solid Mechanics 3
Автор книги: id книги: 2075924     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 16702,5 руб.     (182,16$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Физика Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119831815 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

This book – comprised of three separate volumes – presents the recent developments and research discoveries in structural and solid mechanics; it is dedicated to Professor Isaac Elishakoff. This third volume is devoted to non-deterministic mechanics. <p><i>Modern Trends in Structural and Solid Mechanics 3</i> has broad scope, covering topics such: design optimization under uncertainty, interval field approaches, convex analysis, quantum inspired topology optimization and stochastic dynamics. The book is illustrated by many applications in the field of aerospace engineering, mechanical engineering, civil engineering, biomedical engineering and automotive engineering. <p>This book is intended for graduate students and researchers in the field of theoretical and applied mechanics.

Оглавление

Группа авторов. Modern Trends in Structural and Solid Mechanics 3

Table of Contents

List of Illustrations

List of Tables

Guide

Pages

Modern Trends in Structural and Solid Mechanics 3. Non-deterministic Mechanics

Preface. Short Bibliographical Presentation of Prof. Isaac Elishakoff

Books by Elishakoff

Books edited or co-edited by Elishakoff

1. Optimization in Mitochondrial Energetic Pathways. 1.1. Optimization in neural and cell biology

1.2. Mitochondria

1.3. General morphology; fission and fusion

1.4. Mechanical aspects

1.5. Mitochondrial motility

1.6. Cristae, ultrastructure and supercomplexes

1.7. Mitochondrial diseases and neurodegenerative disorders

1.8. Modeling

1.9. Concluding summary

1.10. Acknowledgments

1.11. Appendix

1.12. References

2. The Concept of Local and Non-Local Randomness for Some Mechanical Problems. 2.1. Introduction

2.2. Preliminary concepts

2.2.1. Statically determinate stochastic beams

2.2.2. Statically indeterminate stochastic beams

2.3. Local and non-local randomness

2.3.1. Statically determinate stochastic beams

2.3.2. Statically indeterminate stochastic beams

2.3.3. Comments on the results

2.4. Conclusion

2.5. References

3. On the Applicability of First-Order Approximations for Design Optimization under Uncertainty. 3.1. Introduction

3.2. Summary of first- and second-order Taylor series approximations for uncertainty quantification

3.2.1. Approximations of stochastic moments

3.2.2. Probabilistic lower bound approximation

3.2.3. Convex anti-optimization

3.2.4. Correlation of probabilistic approaches and convex anti-optimization

3.3. Design optimization under uncertainty

3.3.1. Robust design optimization

3.3.2. Reliability-based design optimization

3.3.3. Optimization with convex anti-optimization

3.4. Numerical examples

3.4.1. Imperfect von Mises truss analysis

3.4.2. Three-bar truss optimization

3.4.2.1. Cross-section as design and random parameters – first-order works

3.4.2.2. Load as a random variable – first-order fails

3.4.3. Topology optimization

3.4.3.1. Load as a random variable – first-order fails

3.4.3.2. Young’s modulus as a random field – first-order works

3.5. Conclusion and outlook

3.6. References

4. Understanding Uncertainty. 4.1. Introduction

4.2. Uncertainty and uncertainties

4.3. Design and uncertainty. 4.3.1. Decision modules

4.3.1.1. Requirements

4.3.1.2. Architecture

4.3.1.3. Engineering

4.3.1.4. Lifetime

4.3.2. Designing in uncertain

4.4. Knowledge entity

4.4.1. Structure of a knowledge entity

4.4.1.1. Definition

4.4.1.2. Entity level

4.4.1.3. Entity maturity

4.5. Robust and reliable engineering. 4.5.1. Definitions

4.5.2. Robustness

4.5.3. Reliability

4.5.4. Optimization

4.5.5. Reliable and robust optimization

4.6. Conclusion

4.7. References

5. New Approach to the Reliability Verification of Aerospace Structures1. 5.1. Introduction

5.2. Factor of safety and probability of failure

5.3. Reliability verification of aerospace structural systems

5.3.1. Reliability demonstration is integrated into the design process

5.3.2. Analysis of failure mechanism and failure modes

5.3.3. Modeling the structural behavior, verifying the model by tests

5.3.4. Design of structural development tests to surface failure modes

5.3.5. Design of development tests to find unpredicted failure modes

5.3.6. “Cleaning” failure mechanism and failure modes

5.3.7. Determination of required safety and confidence in models

5.3.8. Determination of the reliability by “orders of magnitude”

5.4. Summary

5.5. References

6. A Review of Interval Field Approaches for Uncertainty Quantification in Numerical Models. 6.1. Introduction

6.2. Interval finite element analysis

6.3. Convex-set analysis

6.4. Interval field analysis

6.4.1. Explicit interval field formulation

6.4.2. Interval fields based on KL expansion

6.4.3. Interval fields based on convex descriptors

6.5. Conclusion

6.6. Acknowledgments

6.7. References

7. Convex Polytopic Models for the Static Response of Structures with Uncertain-but-bounded Parameters. 7.1. Introduction

7.2. Problem statements

7.3. Analysis and solution of the convex polytopic model for the static response of structures

7.4. Vertex solution theorem of the convex polytopic model for the static response of structures

7.5. Review of the vertex solution theorem of the interval model for the static response of structures

7.6. Numerical examples

7.6.1. Two-step bar

7.6.2. Ten-bar truss

7.6.3. Plane frame

7.7. Conclusion

7.8. Acknowledgments

7.9. References

8. On the Interval Frequency Response of Cracked Beams with Uncertain Damage

8.1. Introduction

8.2. Crack modeling for damaged beams. 8.2.1. Finite element crack model

8.2.2. Continuous crack model

8.3. Statement of the problem

8.3.1. Interval model for the uncertain crack depth

8.3.2. Governing equations of damaged beams

8.3.3. Finite element model versus continuous model

8.4. Interval frequency response of multi-cracked beams

8.4.1. Interval deflection function in the FE model

8.4.2. Interval deflection function in the continuous model

8.5. Numerical applications

8.6. Concluding remarks

8.7. Acknowledgments

8.8. References

9. Quantum-Inspired Topology Optimization

9.1. Introduction

9.2. General statements

9.2.1. Density-based continuum structural topology optimization formulation

9.2.2. Characteristics of quantum computing

9.3. Topology optimization design model based on quantum-inspired evolutionary algorithms

9.3.1. Classic procedure of topology optimization based on the SIMP method and optimality criteria

9.3.2. The fundamental theory of a quantum-inspired evolutionary algorithm – DCQGA. 9.3.2.1. Double chains encoding and decoding for quantum chromosomes

9.3.2.2. The rotation angle of quantum rotation gates

9.3.3. Implementation of the integral topology optimization framework

9.4. A quantum annealing operator to accelerate the calculation and jump out of local extremum

9.5. Numerical examples

9.5.1. Example of a short cantilever

9.5.2. Example of a wing rib

9.6. Conclusion

9.7. Acknowledgments

9.8. References

10. Time Delay Vibrations and Almost Sure Stability in Vehicle Dynamics

10.1. Introduction to road vehicle dynamics

10.2. Delay resonances of half-car models on road

10.3. Extensions to multi-body vehicles on a random road

10.4. Non-stationary road excitations applying sinusoidal models

10.5. Resonance reduction or induction by means of colored noise

10.6. Lyapunov exponents and rotation numbers in vehicle dynamics

10.7. Concluding remarks and main new results

10.8. References

11. Order Statistics Approach to Structural Optimization Considering Robustness and Confidence of Responses

11.1. Introduction

11.2. Overview of order statistics

11.2.1. Definition of order statistics

11.2.2. Tolerance intervals and confidence intervals of quantiles

11.3. Robust design. 11.3.1. Overview of the robust design problem

11.3.2. Worst-case-based method

11.3.3. Order statistics-based method

11.4. Numerical examples. 11.4.1. Design response spectrum

11.4.2. Optimization of the building frame considering seismic responses

11.4.3. Multi-objective optimization considering robustness

11.5. Conclusion

11.6. References

List of Authors

Index. A, B, C

D, E, F

G, I, K

L, M, N

O, P, Q

R, S, T

U, V, W

Summary of Volume 1

Summary of Volume 2

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Series Editor

.....

Each of the three volumes is intended for graduate students and researchers in the field of theoretical and applied mechanics.

Prof. Noël CHALLAMEL

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Modern Trends in Structural and Solid Mechanics 3
Подняться наверх