Fundamentals of Terahertz Devices and Applications

Fundamentals of Terahertz Devices and Applications
Автор книги: id книги: 2108604     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 13968 руб.     (152,34$) Читать книгу Купить и скачать книгу Электронная книга Жанр: Техническая литература Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119460732 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

An authoritative and comprehensive guide to the devices and applications of Terahertz technology Terahertz (THz) technology relates to applications that span in frequency from a few hundred GHz to more than 1000 GHz. Fundamentals of Terahertz Devices and Applications offers a comprehensive review of the devices and applications of Terahertz technology. With contributions from a range of experts on the topic, this book contains in a single volume an inclusive review of THz devices for signal generation, detection and treatment. Fundamentals of Terahertz Devices and Applications offers an exploration and addresses key categories and aspects of Terahertz Technology such as: sources, detectors, transmission, electronic considerations and applications, optical (photonic) considerations and applications. Worked examples—based on the contributors' extensive experience— highlight the chapter material presented. The text is designed for use by novices and professionals who want a better understanding of device operation and use, and is suitable for instructional purposes This important book: Offers the most relevant up-to-date research information and insight into the future developments in the technology Addresses a wide-range of categories and aspects of Terahertz technology Includes material to support courses on Terahertz Technology and more Contains illustrative worked examples Written for researchers, students, and professional engineers, Fundamentals of Terahertz Devices and Applications offers an in-depth exploration of the topic that is designed for both novices and professionals and can be adopted for instructional purposes.

Оглавление

Группа авторов. Fundamentals of Terahertz Devices and Applications

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Fundamentals of Terahertz Devices and Applications

About the Editor

List of Contributors

About the Companion Website

1 Introduction to THz Technologies

2 Integrated Silicon Lens Antennas at Submillimeter‐wave Frequencies

2.1 Introduction

2.2 Elliptical Lens Antennas

2.2.1 Elliptical Lens Synthesis

2.2.2 Radiation of Elliptical Lenses

2.2.2.1 Transmission Function

2.2.2.2 Spreading Factor S(Q)

2.2.2.3 Equivalent Current Distribution and Far‐field Calculation

2.2.2.4 Lens Reflection Efficiency

2.3 Extended Semi‐hemispherical Lens Antennas

2.3.1 Radiation of Extended Semi‐hemispherical Lenses

2.4 Shallow Lenses Excited by Leaky Wave/Fabry–Perot Feeds

2.4.1 Analysis of the Leaky‐wave Propagation Constant

2.4.2 Primary Fields Radiated by a Leaky‐wave Antenna Feed on an Infinite Medium

2.4.3 Shallow‐lens Geometry Optimization

2.5 Fly‐eye Antenna Array

2.5.1 Silicon DRIE Micromachining Process at Submillimeter‐wave Frequencies

2.5.1.1 Fabrication of Silicon Lenses Using DRIE

2.5.1.2 Surface Accuracy

2.5.2 Examples of Fabricated Antennas

Exercises. E2.1 Derivation of the Transmission Coefficients and Lens Critical Angle

E2.2

E2.3

References

3 Photoconductive THz Sources Driven at 1550 nm

3.1 Introduction. 3.1.1 Overview of THz Photoconductive Sources

3.1.2 Lasers and Fiber Optics

3.2 1550‐nm THz Photoconductive Sources. 3.2.1 Epitaxial Materials. 3.2.1.1 Bandgap Engineering

3.2.1.2 Low‐Temperature Growth

3.2.2 Device Types and Modes of Operation

3.2.3 Analysis of THz Photoconductive Sources

3.2.3.1 PC‐Switch Analysis

3.2.3.2 Photomixer Analysis

3.2.3.2.1 p–i–n Photodiode

3.2.3.2.2 MSM Bulk Photoconductor

3.2.4 Practical Issues

3.2.4.1 Contact Effects

3.2.4.2 Thermal Effects

3.2.4.3 Circuit Limitations

3.3 THz Metrology. 3.3.1 Power Measurements. 3.3.1.1 A Traceable Power Sensor

3.3.1.2 Exemplary THz Power Measurement Exercise

3.3.1.3 Other Sources of Error

3.3.2 Frequency Metrology

3.4 THz Antenna Coupling. 3.4.1 Fundamental Principles

3.4.2 Planar Antennas on Dielectric Substrates

3.4.2.1 Input Impedance

3.4.2.2 ΔEIRP (Increase in the EIRP of the Transmitting Antenna)

3.4.2.3 G/T or Aeff/T

3.4.3 Estimation of Power Coupling Factor

3.4.4 Exemplary THz Planar Antennas

3.4.4.1 Resonant Antennas

3.4.4.2 Quick Survey of Self‐complementary Antennas

3.4.4.2.1 Bow‐Tie Antennas

3.4.4.2.2 Log‐Spiral Antennas

3.4.4.2.3 Log‐Periodic Antennas

3.5 State of the Art in 1550‐nm Photoconductive Sources. 3.5.1 1550‐nm MSM Photoconductive Switches. 3.5.1.1 Material and Device Design

3.5.1.2 THz Performance

3.5.2 1550‐nm Photodiode CW (Photomixer) Sources. 3.5.2.1 Material and Device Design

3.5.2.2 THz Performance

3.6 Alternative 1550‐nm THz Photoconductive Sources

3.6.1 Fe‐Doped InGaAs

3.6.2 ErAs Nanoparticles in GaAs: Extrinsic Photoconductivity

3.7 System Applications. 3.7.1 Comparison Between Pulsed and CW THz Systems. 3.7.1.1 Device Aspects

3.7.1.2 Systems Aspects

3.7.2 Wireless Communications

3.7.3 THz Spectroscopy. 3.7.3.1 Time vs Frequency Domain Systems

3.7.3.2 Analysis of Frequency Domain Systems: Amplitude and Phase Modulation

Exercises

Exercise: THz Interaction with Matter

Exercise: Antennas, Links, and Beams

Exercise: Planar Antennas

Exercise: Device Noise, System Noise, and Dynamic Range

Exercise: Ultrafast Photoconductivity and Photodiodes

References

Explanatory Notes (see superscripts in text)

4 THz Photomixers

4.1 Introduction

4.2 Photomixing Basics. 4.2.1 Photomixing Principle

4.2.2 Historical Background

4.3 Modeling THz Photomixers

4.3.1 Photoconductors. 4.3.1.1 Photocurrent Generation

4.3.1.2 Electrical Model

4.3.1.3 Efficiency and Maximum Power. 4.3.1.3.1 Case G1 = G0 and C = 0

4.3.1.3.2 General Case

4.3.2 Photodiode. 4.3.2.1 PIN photodiodes

4.3.2.2 Uni‐Traveling‐Carrier Photodiodes

4.3.2.3 Photocurrent Generation

4.3.2.4 Electrical Model and Output Power

4.3.3 Frequency Down‐conversion Using Photomixers

4.3.3.1 Electrical Model: Conversion Loss

4.4 Standard Photomixing Devices. 4.4.1 Planar Photoconductors

4.4.1.1 Intrinsic Limitation

4.4.2 UTC Photodiodes. 4.4.2.1 Backside Illuminated UTC Photodiodes

4.4.2.2 Waveguide‐fed UTC Photodiodes

4.5 Optical Cavity Based Photomixers. 4.5.1 LT‐GaAs Photoconductors

4.5.1.1 Optical Modeling

4.5.1.2 Experimental Validation. 4.5.1.2.1 Photoresponse

4.5.1.2.2 Photomixing Experiment in the 220–325 GHz Frequency Band. 4.5.1.2.2.1 Photomixer Characteristics

4.5.1.2.2.2 Experimental Set‐up

4.5.1.2.2.3 Results

4.5.1.2.3 Output Power Estimation at 1 THz

4.5.1.2.4 Frequency Down Conversion Using An Optical Cavity LT‐GaAs Photoconductor

4.5.2 UTC Photodiodes

4.5.2.1 Nano Grid Top Contact Electrodes

4.5.2.2 UTC Photodiodes Using Nano‐Grid Top Contact Electrodes

4.5.2.3 Photoresponse Measurement

4.5.2.4 THz Power Generation by Photomixing

4.6 THz Antennas

4.6.1 Planar Antennas

4.6.2 Micromachined Antennas

4.7 Characterization of Photomixing Devices. 4.7.1 On Wafer Characterization

4.7.2 Free Space Characterization

Exercises. Exercise A. Photodetector Theory

Exercise B. Photomixing Model. 1. Ultrafast Photoconductor

2. UTC Photodiode

Exercise C. Antennas

References

5 Plasmonics‐enhanced Photoconductive Terahertz Devices

5.1 Introduction

5.2 Photoconductive Antennas. 5.2.1 Photoconductors for THz Operation

5.2.2 Photoconductive THz Emitters

5.2.2.1 Pulsed THz Emitters

5.2.2.2 Continuous‐wave THz Emitters

5.2.3 Photoconductive THz Detectors

5.2.4 Common Photoconductors and Antennas for Photoconductive THz Devices. 5.2.4.1 Choice of Photoconductor

5.2.4.2 Choice of Antenna

5.3 Plasmonics‐enhanced Photoconductive Antennas. 5.3.1 Fundamentals of Plasmonics

5.3.2 Plasmonics for Enhancing Performance of Photoconductive THz Devices. 5.3.2.1 Principles of Plasmonic Enhancement

5.3.2.2 Design Considerations for Plasmonic Nanostructures

5.3.3 State‐of‐the‐art Plasmonics‐enhanced Photoconductive THz Devices. 5.3.3.1 Photoconductive THz Devices with Plasmonic Light Concentrators

5.3.3.2 Photoconductive THz Devices with Plasmonic Contact Electrodes

5.3.3.3 Large Area Plasmonic Photoconductive Nanoantenna Arrays

5.3.3.4 Plasmonic Photoconductive THz Devices with Optical Nanocavities

5.4 Conclusion and Outlook

Exercises

References

6 Terahertz Quantum Cascade Lasers

6.1 Introduction

6.2 Fundamentals of Intersubband Transitions

6.3 Active Material Design

6.4 Optical Waveguides and Cavities

6.5 State‐of‐the‐Art Performance and Limitations

6.6 Novel Materials Systems

6.6.1 III‐Nitride Quantum Wells

6.6.2 SiGe Quantum Wells

6.7 Conclusion

Acknowledgments

Exercises

References

7 Advanced Devices Using Two‐Dimensional Layer Technology

7.1 Graphene‐Based THz Devices

7.1.1 THz Properties of Graphene

7.1.2 How to Simulate and Model Graphene?

7.1.3 Terahertz Device Applications of Graphene

7.1.3.1 Modulators. 7.1.3.1.1 Broadband Structures

7.1.3.1.2 Electromagnetic‐cavity Integrated Structures

7.1.3.1.3 Graphene/Metal‐Hybrid Metamaterials

7.1.3.1.4 Graphene/Dielectric‐Hybrid Metamaterials

7.1.3.2 Active Filters

7.1.3.3 Phase Modulation in Graphene‐Based Metamaterials

7.2 TMD Based THz Devices

7.3 Applications

Exercises

E7.1 Computation of the Optical Conductivity of Graphene

E7.2 Terahertz Transmission Through a 2D Material Layer Placed at an Optical Interface

E7.3 Transfer Matrix Approach for Multi‐layer Transmission Problems

E7.4 A Condition for Perfect Absorption

E7.5 Terahertz Plasmon Resonances in Periodically Patterned Graphene Disk Arrays

E7.6 Electron Plasma Waves in Gated Graphene

E7.7 Equivalent Circuit Modeling of 2D Material‐Loaded Frequency Selective Surfaces

E7.8 Maximum Terahertz Absorption in 2D Material‐Loaded Frequency Selective Surfaces

References

8 THz Plasma Field Effect Transistor Detectors

8.1 Introduction

8.2 Field Effect Transistors (FETs) and THz Plasma Oscillations

8.2.1 Dispersion of Plasma Waves in FETs

8.2.2 THz Detection by an FET

8.2.2.1 Resonant Detection

8.2.2.2 Broadband Detection

8.2.2.3 Enhancement by DC Drain Current

8.3 THz Detectors Based on Silicon FETs

8.4 Terahertz Detection by Graphene Plasmonic FETs

8.5 Terahertz Detection in Black‐Phosphorus Nano‐Transistors

8.6 Diamond Plasmonic THz Detectors

8.7 Conclusion

Exercises

References

9 Signal Generation by Diode Frequency Multiplication

9.1 Introduction

9.2 Bridging the Microwave to Photonics Gap with Terahertz Frequency Multipliers

9.3 A Practical Approach to the Design of Frequency Multipliers. 9.3.1 Frequency Multiplier Versus Comb Generator

9.3.2 Frequency Multiplier Ideal Matching Network and Ideal Device Performance

9.3.3 Symmetry at Device Level Versus Symmetry at Circuit Level

9.3.4 Classic Balanced Frequency Doublers

9.3.4.1 General Circuit Description

9.3.4.2 Necessary Condition to Balance the Circuit

9.3.5 Balanced Frequency Triplers with an Anti‐Parallel Pair of Diodes

9.3.6 Multi‐Anode Frequency Triplers in a Virtual Loop Configuration

9.3.6.1 General Circuit Description

9.3.6.2 Necessary Condition to Balance the Circuit

9.3.7 Multiplier Design Optimization

9.3.7.1 General Design Methodology

9.3.7.1.1 Bias Voltage

9.3.7.1.2 Input Power

9.3.7.1.3 Epitaxial Layer Length and Doping

9.3.7.1.4 Anode Area

9.3.7.1.5 Temperature

9.3.7.1.6 Carrier Velocity Saturation

9.3.7.2 Nonlinear Modeling of the Schottky Diode Barrier

9.3.7.3 3D Modeling of the Extrinsic Structure of the Diodes

9.3.7.4 Modeling and Optimization of the Diode Cell

9.3.7.5 Input and Output Matching Circuits

9.4 Technology of THz Diode Frequency Multipliers

9.4.1 From Whisker‐Contacted Diodes to Planar Discrete Diodes

9.4.2 Semi‐Monolithic Frequency Multipliers at THz Frequencies

9.4.3 THz Local Oscillators for the Heterodyne Instrument of Herschel Space Observatory

9.4.4 First 2.7 THz Multiplier Chain with More Than 10 μW of Power at Room Temperature

9.4.5 High Power 1.6 THz Frequency Multiplied Source for Future 4.75 THz Local Oscillator

9.5 Power‐Combining at Sub‐Millimeter Wavelength

9.5.1 In‐Phase Power Combining

9.5.1.1 First In‐Phase Power‐Combined Submillimeter‐Wave Frequency Multiplier

9.5.1.2 In‐Phase Power Combining at 900 GHz

9.5.1.3 In‐Phase Power‐Combined Balanced Doublers

9.5.2 In‐Channel Power Combining

9.5.3 Advanced on‐Chip Power Combining

9.5.3.1 High Power 490–560 GHz Frequency Tripler

9.5.3.2 Dual‐Output 550 GHz Frequency Tripler

9.5.3.3 High‐Power Quad‐channel 165–195 GHz Frequency Doubler

9.6 Conclusions and Perspectives

Exercises

References

Explanatory Notes (see superscripts in text)

10 GaN Multipliers

10.1 Introduction. 10.1.1 Frequency Multipliers

10.1.2 Properties of Nitride Materials

10.1.3 Motivation and Challenges

10.2 Theoretical Considerations of GaN Schottky Diode Design

10.2.1 Analysis by Analytical Equations. 10.2.1.1 Nonlinearity and Harmonic Generation

10.2.1.2 Nonlinearity of Ideal Schottky Diode

10.2.1.3 Series Resistance

10.2.2 Analysis by Numeric Simulation

10.2.2.1 Introduction of Semiconductor Device Numerical Simulation

10.2.2.2 Parameters for GaN‐Based Device Simulation

10.2.2.3 Simulation Results. 10.2.2.3.1 Device Structure

10.2.2.3.2 Breakdown Voltage

10.2.2.3.3 I–V Characteristics

10.2.2.3.4 Series Resistance

10.2.2.3.5 C–V Characteristics

10.2.2.3.6 Time‐domain Transient Analysis

10.2.3 Conclusions on Theoretical Considerations of GaN Schottky Diode Design

10.3 Fabrication Process of GaN Schottky Diodes

10.3.1 Fabrication Process

10.3.2 Etching

10.3.3 Metallization. 10.3.3.1 Ohmic Contacts on GaN

10.3.3.2 Schottky Contacts on GaN

10.3.3.2.1 Analysis of Schottky Contact Characteristics

10.3.3.2.2 Oxygen Plasma Before Schottky Metallization

10.3.4 Bridge Interconnects

10.3.4.1 Dielectric Bridge

10.3.4.2 Optical Air‐bridge

10.3.4.3 E‐beam Air‐bridge

10.3.5 Conclusion on Fabrication Process of GaN Schottky Diodes

10.4 Small‐signal High‐frequency Characterization of GaN Schottky Diodes

10.4.1 Current‐voltage Characteristics

10.4.2 Small‐signal Characterization and Equivalent Circuit Modeling

10.4.2.1 Step 1. Parasitic Elements

10.4.2.2 Step 2. Junction Capacitance

10.4.2.3 Step 3. Optimization

10.4.2.4 Summary

10.4.3 Results

10.4.4 Conclusion

10.5 Large‐signal On‐wafer Characterization

10.5.1 Characterization Approach

10.5.2 Large Signal Measurements of GaN Schottky Diodes. 10.5.2.1 LSNA With 50 Ω Load

10.5.2.2 Time Domain Waveforms

10.5.2.3 Instant C–V Under Large‐signal Driven Conditions

10.5.2.4 Power Handling Characteristics

10.5.3 LSNA With Harmonic Load‐pull

10.5.4 Conclusion

10.6 GaN Diode Implementation for Signal Generation

10.6.1 Large‐signal Modeling of GaN Schottky Diodes

10.6.2 Frequency Doubler

10.7 Multiplier Considerations for Optimum Performance

Exercises

References

11 THz Resonant Tunneling Devices

11.1 Introduction

11.2 Principle of RTD Oscillators

11.2.1 Basic Operation of RTD

11.2.2 Principle of Oscillation

11.2.3 Effect of Electron Delay Time

11.2.3.1 Degradation of NDC at High Frequency

11.2.3.2 Generation of Reactance at High Frequency

11.3 Structure and Oscillation Characteristics of Fabricated RTD Oscillators

11.3.1 Actual Structure of RTD Oscillators

11.3.2 High‐frequency Oscillation

11.3.3 High‐output Power Oscillation

11.4 Control of Oscillation Spectrum and Frequency

11.4.1 Oscillation Spectrum and Phase‐Locked Loop

11.4.2 Frequency‐tunable Oscillators

11.5 Targeted Applications. 11.5.1 High‐speed Wireless Communications

11.5.2 Spectroscopy

11.5.3 Other Applications and Expected Future Development

Exercises

References

12 Wireless Communications in the THz Range

12.1 Introduction

12.2 Evolution of Telecoms Toward THz. 12.2.1 Brief Historic

12.2.2 Data Rate Evolution

12.2.3 THz Waves: Propagation, Advantages, and Disadvantages

12.2.4 Frequency Bands

12.2.5 Potential Scenarios

12.2.6 Comparison Between FSO and THz

12.3 THz Technologies: Transmitters, Receivers, and Basic Architecture. 12.3.1 THz Sources

12.3.2 THz Receivers

12.3.3 Basic Architecture of the Transmission System

12.4 Devices/Function Examples for T‐Ray CMOS. 12.4.1 Photomixing Techniques for THz CMOS

12.4.2 THz Modulated Signals Enabled by Photomixing

12.4.3 Other Techniques for the Generation of Modulated THz Signals

12.4.4 Integration, Interconnections, and Antennas. 12.4.4.1 Integration

12.4.4.2 Antennas

12.5 THz Links. 12.5.1 Modulations and Key Indicators of a THz Communication Link

12.5.2 State‐of‐the‐Art of THz Links. 12.5.2.1 First Systems

12.5.2.2 Photonics‐Based Demos

12.5.2.3 Electronic‐Based Demos

12.5.2.4 Beyond 100 GHz High Power Amplification

12.5.2.5 Table of Reported Systems

12.6 Toward Normalization of 100G Links in the THz Range

12.7 Conclusion

12.8 Acronyms

E12.1 Link Budget of a THz Link

References

13 THz Applications: Devices to Space System

13.1 Introduction

13.1.1 Why Is THz Technology Important for Space Science?

13.1.2 Fundamentals of THz Spectroscopy

13.1.3 THz Technology for Space Exploration

13.2 THz Heterodyne Receivers

13.2.1 Local Oscillators

13.2.1.1 Frequency Multiplied Chains

13.2.2 Mixers. 13.2.2.1 Room Temperature Schottky Diode Mixers

13.2.2.2 SIS Mixer Technology

13.2.2.3 Hot Electron Bolometric (HEB) Mixers

13.2.2.4 State‐of‐the‐Art Receiver Sensitivities

13.3 THz Space Applications

13.3.1 Planetary Science: The Case for Miniaturization

13.3.2 Astrophysics: The Case for THz Array Receivers

13.3.3 Earth Science: The Case for Active THz Systems

13.4 Summary and Future Trends

Acknowledgment

Exercises

References

Index. a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Edited by

.....

by substituting (2.46) and (2.47) in (2.45), the amplitude of the field at equivalent aperture of the lens is related to the amplitude of the incident field as:

(2.48)

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Fundamentals of Terahertz Devices and Applications
Подняться наверх