Machine Learning Algorithms and Applications

Machine Learning Algorithms and Applications
Автор книги: id книги: 2131145     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 18830,4 руб.     (185,19$) Читать книгу Купить и скачать книгу Электронная книга Жанр: Программы Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119769248 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Machine Learning Algorithms  is for current and ambitious machine learning specialists looking to implement solutions to real-world machine learning problems. It talks entirely about the various applications of machine and deep learning techniques, with each chapter dealing with a novel approach of machine learning architecture for a specific application, and then compares the results with previous algorithms. The book discusses many methods based in different fields, including statistics, pattern recognition, neural networks, artificial intelligence, sentiment analysis, control, and data mining, in order to present a unified treatment of machine learning problems and solutions. All learning algorithms are explained so that the user can easily move from the equations in the book to a computer program.

Оглавление

Группа авторов. Machine Learning Algorithms and Applications

Table of Contents

List of Illustrations

List of Tables

Guide

Pages

Machine Learning Algorithms and Applications

Acknowledgments

Preface

1. A Learning-Based Visualization Application for Air Quality Evaluation During COVID-19 Pandemic in Open Data Centric Services

1.1 Introduction. 1.1.1 Open Government Data Initiative

1.1.2 Air Quality

1.1.3 Impact of Lockdown on Air Quality

1.2 Literature Survey

1.3 Implementation Details

1.3.1 Proposed Methodology

1.3.2 System Specifications

1.3.3 Algorithms

1.3.4 Control Flow

1.4 Results and Discussions

1.5 Conclusion

References

2. Automatic Counting and Classification of Silkworm Eggs Using Deep Learning

2.1 Introduction

2.2 Conventional Silkworm Egg Detection Approaches

2.3 Proposed Method

2.3.1 Model Architecture

2.3.2 Foreground-Background Segmentation

2.3.3 Egg Location Predictor

2.3.4 Predicting Egg Class

2.4 Dataset Generation

2.5 Results

2.6 Conclusion

Acknowledgment

References

3. A Wind Speed Prediction System Using Deep Neural Networks

3.1 Introduction

3.2 Methodology

3.2.1 Deep Neural Networks

3.2.2 The Proposed Method

3.2.2.1 Data Acquisition

3.2.2.2 Data Pre-Processing

3.2.2.3 Model Selection and Training

3.2.2.4 Performance Evaluation

3.2.2.5 Visualization

3.3 Results and Discussions. 3.3.1 Selection of Parameters

3.3.2 Comparison of Models

3.4 Conclusion

References

4. Res-SE-Net: Boosting Performance of ResNets by Enhancing Bridge Connections

4.1 Introduction

4.2 Related Work

4.3 Preliminaries. 4.3.1 ResNet

4.3.2 Squeeze-and-Excitation Block

4.4 Proposed Model

4.4.1 Effect of Bridge Connections in ResNet

4.4.2 Res-SE-Net: Proposed Architecture

4.5 Experiments. 4.5.1 Datasets

4.5.2 Experimental Setup

4.6 Results

4.7 Conclusion

References

5. Hitting the Success Notes of Deep Learning

5.1 Genesis

5.2 The Big Picture: Artificial Neural Network

5.3 Delineating the Cornerstones

5.3.1 Artificial Neural Network vs. Machine Learning

5.3.2 Machine Learning vs. Deep Learning

5.3.3 Artificial Neural Network vs. Deep Learning

5.4 Deep Learning Architectures. 5.4.1 Unsupervised Pre-Trained Networks

5.4.2 Convolutional Neural Networks

5.4.3 Recurrent Neural Networks

5.4.4 Recursive Neural Network

5.5 Why is CNN Preferred for Computer Vision Applications?

5.5.1 Convolutional Layer

5.5.2 Nonlinear Layer

5.5.3 Pooling Layer

5.5.4 Fully Connected Layer

5.6 Unravel Deep Learning in Medical Diagnostic Systems

5.7 Challenges and Future Expectations

5.8 Conclusion

References

6. Two-Stage Credit Scoring Model Based on Evolutionary Feature Selection and Ensemble Neural Networks

6.1 Introduction

6.1.1 Motivation

6.2 Literature Survey

6.3 Proposed Model for Credit Scoring

6.3.1 Stage-1: Feature Selection

6.3.2 Proposed Criteria Function

6.3.3 Stage-2: Ensemble Classifier

6.4 Results and Discussion

6.4.1 Experimental Datasets and Performance Measures

6.4.2 Classification Results With Feature Selection

6.5 Conclusion

References

7. Enhanced Block-Based Feature Agglomeration Clustering for Video Summarization

7.1 Introduction

7.2 Related Works

7.3 Feature Agglomeration Clustering

7.4 Proposed Methodology

7.4.1 Pre-Processing

7.4.2 Modified Block Clustering Using Feature Agglomeration Technique

7.4.3 Post-Processing and Summary Generation

7.5 Results and Analysis

7.5.1 Experimental Setup and Data Sets Used

7.5.2 Evaluation Metrics

7.5.3 Evaluation

7.6 Conclusion

References

8. Cardiac Arrhythmia Detection and Classification From ECG Signals Using XGBoost Classifier

8.1 Introduction

8.2 Materials and Methods

8.2.1 MIT-BIH Arrhythmia Database

8.2.2 Signal Pre-Processing

8.2.3 Feature Extraction

8.2.4 Classification

8.2.4.1 XGBoost Classifier

8.2.4.2 AdaBoost Classifier

8.3 Results and Discussion

8.4 Conclusion

References

9. GSA-Based Approach for Gene Selection from Microarray Gene Expression Data

9.1 Introduction

9.2 Related Works

9.3 An Overview of Gravitational Search Algorithm

9.4 Proposed Model

9.4.1 Pre-Processing

9.4.2 Proposed GSA-Based Feature Selection

9.5 Simulation Results

9.5.1 Biological Analysis

9.6 Conclusion

References

10. On Fusion of NIR and VW Information for Cross-Spectral Iris Matching

10.1 Introduction

10.1.1 Related Works

10.2 Preliminary Details

10.2.1 Fusion

10.3 Experiments and Results

10.3.1 Databases

10.3.2 Experimental Results

10.3.2.1 Same Spectral Matchings

10.3.2.2 Cross Spectral Matchings

10.3.3 Feature-Level Fusion

10.3.4 Score-Level Fusion

10.4 Conclusions

References

11. Fake Social Media Profile Detection

11.1 Introduction

11.2 Related Work

11.3 Methodology

11.3.1 Dataset

11.3.2 Pre-Processing

11.3.3 Artificial Neural Network

Hyperparameters

11.3.4 Random Forest

11.3.5 Extreme Gradient Boost

11.3.6 Long Short-Term Memory

11.4 Experimental Results

11.5 Conclusion and Future Work

Acknowledgment

References

12. Extraction of the Features of Fingerprints Using Conventional Methods and Convolutional Neural Networks

12.1 Introduction

12.2 Related Work

12.3 Methods and Materials. 12.3.1 Feature Extraction Using SURF

12.3.2 Feature Extraction Using Conventional Methods

12.3.2.1 Local Orientation Estimation

12.3.2.2 Singular Region Detection

12.3.3 Proposed CNN Architecture

12.3.4 Dataset

12.3.5 Computational Environment

12.4 Results

12.4.1 Feature Extraction and Visualization

12.5 Conclusion

Acknowledgements

References

13. Facial Expression Recognition Using Fusion of Deep Learning and Multiple Features

13.1 Introduction

13.2 Related Work

13.3 Proposed Method

13.3.1 Convolutional Neural Network

13.3.1.1 Convolution Layer

13.3.1.2 Pooling Layer

13.3.1.3 ReLU Layer

13.3.1.4 Fully Connected Layer

13.3.2 Histogram of Gradient

13.3.3 Facial Landmark Detection

13.3.4 Support Vector Machine

13.3.5 Model Merging and Learning

13.4 Experimental Results. 13.4.1 Datasets

13.5 Conclusion

Acknowledgement

References

14. AnimNet: An Animal Classification Network using Deep Learning

14.1 Introduction

14.1.1 Feature Extraction

14.1.2 Artificial Neural Network

14.1.3 Transfer Learning

14.2 Related Work

14.3 Proposed Methodology

14.3.1 Dataset Preparation

14.3.2 Training the Model

14.4 Results

14.4.1 Using Pre-Trained Networks

14.4.2 Using AnimNet

14.4.3 Test Analysis

14.5 Conclusion

References

15. A Hybrid Approach for Feature Extraction From Reviews to Perform Sentiment Analysis

15.1 Introduction

15.2 Related Work

15.3 The Proposed System

15.3.1 Feedback Collector

15.3.2 Feedback Pre-Processor

15.3.3 Feature Selector

15.3.4 Feature Validator

15.3.4.1 Removal of Terms From Tentative List of Features on the Basis of Syntactic Knowledge

15.3.4.2 Removal of Least Significant Terms on the Basis of Contextual Knowledge

15.3.4.3 Removal of Less Significant Terms on the Basis of Association With Sentiment Words

15.3.4.4 Removal of Terms Having Similar Sense

15.3.4.5 Removal of Terms Having Same Root

15.3.4.6 Identification of Multi-Term Features

15.3.4.7 Identification of Less Frequent Feature

15.3.5 Feature Concluder

15.4 Result Analysis

15.5 Conclusion

References

16. Spark-Enhanced Deep Neural Network Framework for Medical Phrase Embedding

16.1 Introduction

16.2 Related Work

16.3 Proposed Approach

16.3.1 Phrase Extraction

16.3.2 Corpus Annotation

16.3.3 Phrase Embedding

16.4 Experimental Setup

16.4.1 Dataset Preparation

16.4.2 Parameter Setting

16.5 Results

16.5.1 Phrase Extraction

16.5.2 Phrase Embedding

16.6 Conclusion

References

17. Image Anonymization Using Deep Convolutional Generative Adversarial Network

17.1 Introduction

17.2 Background Information

17.2.1 Black Box and White Box Attacks

17.2.2 Model Inversion Attack

17.2.3 Differential Privacy

17.2.3.1 Definition

17.2.4 Generative Adversarial Network

17.2.5 Earth-Mover (EM) Distance/Wasserstein Metric

17.2.6 Wasserstein GAN

17.2.7 Improved Wasserstein GAN (WGAN-GP)

17.2.8 KL Divergence and JS Divergence

17.2.9 DCGAN

17.3 Image Anonymization to Prevent Model Inversion Attack

17.3.1 Algorithm

17.3.2 Training

17.3.3 Noise Amplifier

17.3.4 Dataset

17.3.5 Model Architecture

17.3.6 Working

17.3.7 Privacy Gain

17.4 Results and Analysis

17.5 Conclusion

References

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Scrivener Publishing 100 Cummings Center, Suite 541J Beverly, MA 01915-6106

.....

Figure 1.4 Predicted values in Bengaluru in December, 2017.

Figure 1.5 Predicted values in Bengaluru in June, 2020.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Machine Learning Algorithms and Applications
Подняться наверх