Environmental and Agricultural Microbiology

Environmental and Agricultural Microbiology
Автор книги: id книги: 2131582     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 25783,3 руб.     (281,2$) Читать книгу Купить и скачать книгу Электронная книга Жанр: Здоровье Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119526742 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

The book, Environmental and Agricultural Microbiology: Applications for Sustainability is divided in to two parts which embodies chapters on sustenance and life cycles of these microorganisms in various environmental conditions, their dispersal, interactions with other inhabited communities, metabolite production and reclamation. Though books pertaining to soil & agricultural microbiology/environmental biotechnology are available, there is a dearth of comprehensive literature on behavior of microorganisms in environmental and agricultural realm. Part 1 includes bioremediation of agrochemicals by microalgae, detoxification of chromium and other heavy metals by microbial biofilm, microbial biopolymer technology including polyhydroxyalkanoates (PHAs) and polyhydroxybutyrates (PHB), their production, degradability behaviors and applications. Biosurfactants production and their commercial importance are also systematically represented in this part. Part 2 having 9 chapters and facilitates imperative ideas on approaches for sustainable agriculture through functional soil microbes, next generation crop improvement strategies via rhizosphere microbiome, production and implementations of liquid biofertilizers, mitigation of methane from livestocks, chitinases from microbes, extremozymes, an enzyme from extremophilic microorganism and their relevance in current biotechnology, lithobiontic communities and their environmental importance have been comprehensively elaborated. In the era of sustainable energy production biofuel and other bioenergy products play a key role and their production from microbial sources are frontiers for researchers. The last chapter unveils the importance of microbes and their consortia for management of solid waste in amalgamation with biotechnology.

Оглавление

Группа авторов. Environmental and Agricultural Microbiology

Table of Contents

Guide

List of Illustrations

List of Tables

Pages

Environmental and Agricultural Microbiology. Applications for Sustainability

Preface

1. A Recent Perspective on Bioremediation of Agrochemicals by Microalgae: Aspects and Strategies

1.1 Introduction

1.2 Pollution Due to Pesticides

1.2.1 Acute Effects

1.2.2 Chronic Effects

1.3 Microalgal Species Involved in Bioremediation of Pesticides

1.4 Strategies for Phycoremediation of Pesticides. 1.4.1 Involvement of Enzymes in Phycoremediation of Pesticides

1.4.2 Use of Genetically Engineered Microalgae

1.5 Molecular Aspects of Pesticide Biodegradation by Microalgae

1.6 Factor Affecting Phycoremediation of Pesticides

1.6.1 Biological Factor

1.6.2 Chemical Factor

1.6.3 Environment Factor

1.7 Benefit and Shortcomings of Phycoremediation

1.7.1 Benefits

1.7.2 Shortcomings

1.8 Conclusion and Future Prospects

References

2. Microalgal Bioremediation of Toxic Hexavalent Chromium: A Review

2.1 Introduction

2.1.1 Chromium Cycle

2.2 Effects of Hexavalent Chromium Toxicity. 2.2.1 Toxicity to Microorganisms

2.2.2 Toxicity to Plant Body

2.2.3 Toxicity to Animals

2.3 Chromium Bioremediation by Microalgae

2.3.1 Cyanobacteria

2.3.2 Green Algae

2.3.3 Diatoms

2.4 Mechanism Involved in Hexavalent Chromium Reduction in Microalgae

2.5 Conclusion

References

3. Biodetoxification of Heavy Metals Using Biofilm Bacteria

3.1 Introduction

3.2 Source and Toxicity of Heavy Metal Pollution

3.2.1 Non-Essential Heavy Metals

3.2.1.1 Arsenic

3.2.1.2 Cadmium

3.2.1.3 Chromium

3.2.1.4 Lead

3.2.1.5 Mercury

3.2.2 Essential Heavy Metals

3.2.2.1 Copper

3.2.2.2 Zinc

3.2.2.3 Nickel

3.3 Biofilm Bacteria

3.4 Interaction of Metal and Biofilm Bacteria

3.5 Biodetoxification Mechanisms

3.5.1 Biosorption

3.5.2 Bioleaching

3.5.3 Biovolatilization

3.5.4 Bioimmobilization

3.6 Conclusion

References

4. Microbial-Derived Polymers and Their Degradability Behavior for Future Prospects

4.1 Introduction

4.2 Polyamides

4.2.1 Bioavailability and Production

4.2.2 Biodegradability of Polyamides

4.2.3 Degradation of Nylon 4 Under the Soil

4.2.4 Fungal Degradation of Nylon 6 and Nylon 66 (Synthetic Polyamide)

4.2.5 Itaconic Acid-Based Heterocyclic Polyamide

4.2.6 Summary and Future Development

4.3 Polylactic Acid

4.3.1 Availability and Production

4.3.2 Polymerization Method

4.3.3 Biodegradability of Polylactic Acid

4.3.4 Copolymerization Method

4.3.5 Blending Method

4.3.6 Nanocomposite Formation

4.3.7 Summary

4.4 Polyhydroxyalkanoates

4.4.1 Biosynthesis of Polyhydroxyalkanoates

4.4.2 Application of PHAs

4.4.3 Biodegradability of PHAs

4.4.4 Degradability Methods

4.4.5 Summary

4.5 Conclusion and Future Development

References

5. A Review on PHAs: The Future Biopolymer

5.1 Introduction

5.2 Green Plastic: Biodegradable Polymer Used as Plastic

5.3 Difference Between Biopolymer and Bioplastic

5.4 Polyhydroxyalkanoates

5.5 Polyhydroxyalkanoates and Its Applications

5.6 Microorganisms Producing PHAs

5.7 Advantages

5.8 Conclusion and Future Prospective

References

6. Polyhydroxybutyrate as an Eco-Friendly Alternative of Synthetic Plastics

6.1 Introduction

6.2 Bioplastics

6.4 Classification of Biodegradable Polymers

6.5 PHB-Producing Bacteria

6.6 Methods for Detecting PHB Granules

6.7 Biochemical Pathway for Synthesis of PHB

6.8 Production of PHB

6.8.1 Process Optimization for PHB Production

6.8.2 Optimization of PHB Production by One Variable at a Time Approach

6.8.3 Statistical Approaches for PHB Optimization

6.9 Production of PHB Using Genetically Modified Organisms

6.10 Characterization of PHB

6.11 Various Biochemical Techniques Used for PHB Characterization

6.11.1 Fourier Transform Infrared Spectroscopy

6.11.2 Differential Scanning Calorimetry

6.11.3 Thermogravimetric Analysis

6.11.4 X-Ray Powder Diffraction (XRD)

6.11.5 Nuclear Magnetic Resonance Spectroscopy

6.11.6 Microscopic Techniques

6.11.7 Elemental Analysis

6.11.8 Polarimetry

6.11.9 Molecular Size Analysis

6.12 Biodegradation of PHB

6.13 Application Spectrum of PHB

6.14 Conclusion

6.15 Future Perspectives

Acknowledgements

References

7. Microbial Synthesis of Polyhydroxyalkanoates (PHAs) and Their Applications

Abbreviations

7.1 Introduction

7.2 Conventional Plastics and Its Issues in Utility

7.2.1 Synthetic Plastic and Its Accumulation or Degradation Impacts

7.3 Bioplastics

7.3.1 Polyhydroxyalkanoates

7.3.1.1 Microorganisms in the Production of PHAs. 7.3.1.1.1 Rhodospirillum rubrum

7.3.1.1.2 Escherichia coli

7.3.1.1.3 Pseudomonas Species

7.3.1.1.4 Stain A. quitalea Species USM4

7.3.1.1.5 Strain Natrinema altunense RM-10

7.4 Fermentation for PHAs Production

7.5 Downstream Process for PHAs

7.6 Conclusions

References

8. Polyhydroxyalkanoates for Sustainable Smart Packaging of Fruits

8.1 Introduction

8.2 Physiological Changes of Fresh Fruits During Ripening and Minimal Processing

8.3 Smart Packaging

8.4 Biodegradable Polymers for Fruit Packaging

8.5 Legal Aspects of Smart Packaging

8.6 Pros and Cons of Smart Packaging Using PHAs

8.7 Conclusion

References

9. Biosurfactants Production and Their Commercial Importance

Abbreviations

9.1 Introduction

9.2 Chemical Surfactant Compounds

9.2.1 Biosurfactant Compounds

9.3 Properties of Biosurfactant Compound. 9.3.1 Activities of Surface and Interface Location

9.3.2 Temperature and pH Tolerance

9.3.3 Biodegradability

9.3.4 Low Toxicity

9.3.5 Emulsion Forming and Breaking

9.4 Production of Biosurfactant by Microbial Fermentation

9.4.1 Factors Influencing the Production of Biosurfactants

9.4.1.1 Environmental Conditions

9.4.1.2 Carbon Substrates

9.4.1.3 Estimation of Biosurfactants Activity

9.5 Advantages, Microorganisms Involved, and Applications of Biosurfactants. 9.5.1 Advantages of Using Biosurfactants

9.5.1.1 Easy Raw Materials for Biosurfactant Biosynthesis

9.5.1.2 Low Toxic Levels for Environment

9.5.1.3 Best Operation With Surface and Interface Activity

9.5.1.4 Good Biodegradability

9.5.1.5 Physical Variables

9.5.2 Microbial Sources

9.5.3 Production of Biosurfactants

9.5.3.1 Production of Rhamnolipids

9.5.3.2 Regulation of Rhamnolipids Synthesis

9.5.3.3 Commercial Use of Biosurfactants. 9.5.3.3.1 Food Industries

9.5.3.3.2 Bioremediation

9.5.3.3.3 Removal of Oil and Petroleum

9.5.3.3.4 Agricultural Use of Biosurfactants

9.6 Conclusions

References

10. Functional Soil Microbes: An Approach Toward Sustainable Horticulture

10.1 Introduction

10.2 Rhizosphere Microbial Diversity

10.3 Plant Growth–Promoting Rhizobacteria

10.3.1 Nitrogen Fixation

10.3.2 Production of Phytohormones

10.3.3 Production of Enzymes That can Transform Crop Growth

10.3.4 Microbial Antagonism

10.3.5 Solubilization of Minerals

10.3.6 Siderophore and Hydrogen Cyanide (HCN) Production

10.3.7 Cyanide (HCN) Production

10.3.8 Plant Growth–Promoting Rhizobacteria on Growth of Horticultural Crops

10.4 Conclusion and Future Perspectives

References

11. Rhizosphere Microbiome: The Next-Generation Crop Improvement Strategy

11.1 Introduction

11.2 Rhizosphere Engineering

11.3 Omics Tools to Study Rhizosphere Metagenome

11.3.1 Metagenomics

11.3.2 Metaproteomics

11.3.3 Metatranscriptomics

11.3.4 Ionomics

11.4 As Next-Generation Crop Improvement Strategy

11.5 Conclusion

References

12. Methane Emission and Strategies for Mitigation in Livestock

12.1 Introduction

12.2 Contribution of Methane from Livestock

12.3 Methanogens

12.3.1 Rumen Microbial Community

12.3.2 Methanogens Found in Rumen

12.3.3 Enrichment of Methanogens from Rumen Liquor

12.3.4 Screening for Methane Production

12.3.5 Isolation of Methanogens

12.3.6 Molecular Characterization

12.4 Methanogenesis: Methane Production

12.4.1 Pathways of Methanogenesis

12.4.2 Pathway of CO2 Reduction

12.4.3 CO2 Reduction to Formyl-Methanofuran

12.4.4 Conversion of the Formyl Group from Formyl-Methanofuran to Formyl-Tetrahydromethanopterin

12.4.5 Formation of Methenyl-Tetrahydromethanopterin

12.4.6 Reduction of Methenyl-Tetrahydromethanopterin to Methyl-Tetrahydromethanopterin

12.4.7 Reduction of Methyl-Tetrahydromethanopterin to Methyl-S-Coenzyme M

12.4.8 Reduction of Methyl-S-Coenzyme M to CH4

12.5 Strategies for Mitigation of Methane Emission

12.5.1 Dietary Manipulation. 12.5.1.1 Increasing Dry Matter Intake

12.5.1.2 Increasing Ration Concentrate Fraction

12.5.1.3 Supplementation of Lipid

12.5.1.4 Protozoa Removal

12.5.2 Feed Additives. 12.5.2.1 Ionophore Compounds

12.5.2.2 Halogenated Methane Compound

12.5.2.3 Organic Acid

12.5.3 Microbial Feed Additives

12.5.3.1 Vaccination

12.5.3.2 Bacteriophages and Bacteriocins

12.5.4 Animal Breeding and Selection

12.6 Conclusion

References

13. Liquid Biofertilizers and Their Applications: An Overview

13.1 Introduction

13.1.1 Chemical Fertilizer and its Harmful Effect

13.2 Biofertilizers “Boon for Mankind”

13.3 Carrier-Based Biofertilizers

13.3.1 Solid Carrier-Based Biofertilizers

13.3.2 Liquid Biofertilizer

13.4 Sterilization of the Carrier

13.5 Merits of Using Liquid Biofertilizer Over Solid Carrier-Based Biofertilizer

13.6 Types of Liquid Biofertilizer

13.7 Production of Liquid Biofertilizers

13.7.1 Isolation of the Microorganism

13.7.2 Preparation of Medium and Growth Condition

13.7.3 Culture and Preservation

13.7.4 Preparation of Liquid Culture

13.7.5 Fermentation and Mass Production

13.7.6 Formulation of the Liquid Biofertilizers

13.8 Applications of Biofertilizers

13.9 Conclusion

References

14. Extremozymes: Biocatalysts From Extremophilic Microorganisms and Their Relevance in Current Biotechnology

14.1 Introduction

14.2 Extremophiles: The Source of Novel Enzymes

14.2.1 Thermophilic Extremozymes

14.2.2 Psychrophilic Extremozymes

14.2.3 Halophilic Extremozymes

14.2.4 Alkaliphilic/Acidiophilic Extremozymes

14.2.5 Piezophilic Extremozymes

14.3 The Potential Application of Extremozymes in Biotechnology

14.4 Conclusion and Future Perspectives

References

15. Microbial Chitinases and Their Applications: An Overview

15.1 Introduction

15.2 Chitinases and Its Types

15.3 Sources of Microbial Chitinase

15.3.1 Bacterial Chitinases

15.3.2 Fungal Chitinases

15.3.3 Actinobacteria

15.3.4 Viruses/Others

15.4 Genetics of Microbial Chitinase

15.5 Biotechnological Advances in Microbial Chitinase Production

15.5.1 Media Components

15.5.2 Physical Parameters

15.5.3 Modes and Methods of Fermentation

15.5.4 Advances Biotechnological Methods

15.6 Applications of Microbial Chitinases

15.6.1 Agricultural. 15.6.1.1 Biopesticides

15.6.1.2 Biocontrol

15.6.2 Biomedical

15.6.3 Pharmaceutical

15.6.4 Industrial

15.6.5 Environmental

15.6.5.1 Waste Management

15.6.6 Others

15.7 Conclusion

References

16. Lithobiontic Ecology: Stone Encrusting Microbes and their Environment

16.1 Introduction

16.2 Diversity of Lithobionts and Its Ecological Niche

16.2.1 Epiliths

16.2.2 Endoliths

16.2.3 Hypoliths

16.3 Colonization Strategies of Lithobionts

16.3.1 Temperature

16.3.2 Water Availability

16.3.3 Light Availability

16.4 Geography of Lithobbiontic Coatings. 16.4.1 Bacteria

16.4.2 Cyanobacteria

16.4.3 Fungi

16.4.4 Algae

16.4.5 Lichens

16.5 Impacts of Lithobiontic Coatings. 16.5.1 On Organic Remains

16.5.2 On Rock Weathering

16.5.3 On Rock Coatings

16.6 Role of Lithobionts in Harsh Environments

16.7 Conclusion

References

17. Microbial Intervention in Sustainable Production of Biofuels and Other Bioenergy Products

17.1 Introduction

17.2 Biomass

17.3 Biofuel

17.3.1 Biodiesel

17.3.1.1 Microalgae in Biodiesel Production

17.3.1.2 Oleaginous Yeasts in Biodiesel Production

17.3.1.3 Oleaginous Fungi in Biodiesel Production

17.3.1.4 Bacteria in Biodiesel Production

17.3.2 Bioalcohol

17.3.2.1 Bioethanol

17.3.2.2 Biobutanol

17.3.3 Biogas

17.3.4 Biohydrogen

17.4 Other Bioenergy Products. 17.4.1 Microbial Fuel Cells

17.4.1.1 Microbes Used in MFCs

17.4.1.2 Future Aspects of Microbial Fuel Cells

17.4.2 Microbial Nanowires in Bioenergy Application

17.4.2.1 Pili

17.4.2.2 Outer Membranes and Extended Periplasmic Space

17.4.2.3 Unknown Type—MNWs Whose Identity to be Confirmed

17.4.3 Microbial Nanowires in Bioenergy Production

17.5 Conclusion

References

18. Role of Microbes and Microbial Consortium in Solid Waste Management

18.1 Introduction

18.2 Types of Solid Waste

18.2.1 Domestic Wastes

18.2.2 Institutional and Commercial Wastes

18.2.3 Wastes From Street Cleansing

18.2.4 Industrial Wastes

18.2.5 Nuclear Wastes

18.2.6 Agricultural Wastes

18.3 Waste Management in India

18.4 Solid Waste Management. 18.4.1 Municipal Solid Waste Management

18.5 Solid Waste Management Techniques

18.5.1 Incineration

18.5.2 Pyrolysis and Gasification

18.5.3 Landfilling

18.5.4 Aerobic Composting

18.5.5 Vermicomposting

18.5.6 Anaerobic Digestion

18.5.6.1 Enzymatic Hydrolysis

18.5.6.2 Fermentation

18.5.6.3 Acetogenesis

18.5.6.4 Methanogenesis

18.5.7 Bioethanol From Various Solid Wastes

18.6 Conclusion

References

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Scrivener Publishing

.....

20. Rohr, J.R., Schotthoefer, A.M., Raffel, T.R., Carrick, H.J., Halstead, N., Hoverman, J.T., Johnson, C.M., Johnson, L.B., Lieske, C., Piwoni, M.D., Schoff, P.K., Beasley, V.R., Agrochemicals increase trematode infections in a declining amphibian species. Nature, 455, 1235, 2008.

21. Brammall, R.A. and Higgins, V.J., The effect of glyphosate on resistance of tomato to Fusarium crown and root rot disease and on the formation of host structural defensive barriers. Can. J. Bot., 66, 1547, 1988.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Environmental and Agricultural Microbiology
Подняться наверх