Spectroscopy for Materials Characterization

Spectroscopy for Materials Characterization
Автор книги: id книги: 2139669     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 16413,1 руб.     (163,77$) Читать книгу Купить и скачать книгу Электронная книга Жанр: Техническая литература Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119698050 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

SPECTROSCOPY FOR MATERIALS CHARACTERIZATION Learn foundational and advanced spectroscopy techniques from leading researchers in physics, chemistry, surface science, and nanoscience In Spectroscopy for Materials Characterization, accomplished researcher Simonpietro Agnello delivers a practical and accessible compilation of various spectroscopy techniques taught and used to today. The book offers a wide-ranging approach taught by leading researchers working in physics, chemistry, surface science, and nanoscience. It is ideal for both new students and advanced researchers studying and working with spectroscopy. Topics such as confocal and two photon spectroscopy, as well as infrared absorption and Raman and micro-Raman spectroscopy, are discussed, as are thermally stimulated luminescence and spectroscopic studies of radiation effects on optical materials. Each chapter includes a basic introduction to the theory necessary to understand a specific technique, details about the characteristic instrumental features and apparatuses used, including tips for the appropriate arrangement of a typical experiment, and a reproducible case study that shows the discussed techniques used in a real laboratory. Readers will benefit from the inclusion of: Complete and practical case studies at the conclusion of each chapter to highlight the concepts and techniques discussed in the material Citations of additional resources ideal for further study A thorough introduction to the basic aspects of radiation matter interaction in the visible-ultraviolet range and the fundamentals of absorption and emission A rigorous exploration of time resolved spectroscopy at the nanosecond and femtosecond intervals Perfect for Master and Ph.D. students and researchers in physics, chemistry, engineering, and biology, Spectroscopy for Materials Characterization will also earn a place in the libraries of materials science researchers and students seeking a one-stop reference to basic and advanced spectroscopy techniques.

Оглавление

Группа авторов. Spectroscopy for Materials Characterization

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Spectroscopy for Materials Characterization

Preface

List of Contributors

1 Radiation–Matter Interaction Principles: Optical Absorption and Emission in the Visible‐Ultraviolet Region

1.1 Empirical Aspects of Radiation–Matter Interaction

1.1.1 Optical Absorption: The Lambert–Beer Law

1.1.2 Emission: Fluorescence and Phosphorescence

1.2 Microscopic Point of View

1.2.1 Einstein Coefficients

1.2.2 Oscillator Strength, Lifetime, Quantum Yield

1.2.3 Vibronic States: Homogeneous and Inhomogeneous Lineshape

1.2.4 Jablonski Energy Level Diagram: Permitted and Forbidden Transitions

1.2.5 Excited States Rate Equations

1.3 Instrumental Setups

1.3.1 Typical Block Diagram of Spectrometers

1.3.2 Light Sources

1.3.3 Dispersion Elements: Gratings and Resolution Power

1.3.4 Detectors: Photodiode, Photomultiplier, Charge Coupled Device

1.4 Case Studies

1.4.1 Optical Absorption in Visible‐Ultraviolet Range

1.4.1.1 Scanning Device (Bandwidth and Scanning Speed Effects)

1.4.1.2 CCD Fiber Optic Device

1.4.2 Photoluminescence

1.4.2.1 Emission and Excitation Spectra: Energy Levels Reconstruction

References

2 Time‐Resolved Photoluminescence

2.1 Introduction to Photoluminescence Spectroscopy

2.1.1 Photoluminescence Properties Related to Points Defects: Electron–Phonon Coupling

2.1.2 Optical Transitions: The Franck–Condon Principle

2.1.3 Zero‐Phonon Line

2.1.4 Phonon Line Structure

2.1.5 Vibrational Structure

2.1.6 Inhomogeneous Effects

2.2 Experimental Methods and Analysis. 2.2.1 Time‐Resolved Luminescence

2.2.2 Site‐Selective Luminescence

2.2.3 Basic Design of Experimental Setup: Pulsed Laser Sources; Monochromators; Detectors

2.2.3.1 Tunable Laser

2.2.3.2 Time‐Resolved Detection System: Spectrograph and Intensified CCD Camera

2.3 Case Studies: Luminescent Point Defects in Amorphous SiO2

2.3.1 Emission Spectra and Lifetime Measurements

2.3.2 Zero‐Phonon Line Probed by Site‐Selective Luminescence

References

3 Ultrafast Optical Spectroscopies

3.1 Femtosecond Spectroscopy: An Overview

3.2 Ultrafast Optical Pulses. 3.2.1 General Properties

3.2.1.1 Dispersion Effect: Group Velocity Dispersion

3.2.2 Nonlinear Optics: Basis and Applications. 3.2.2.1 Second Harmonic Generation and Sum Frequency Generation

3.2.2.2 Noncollinear Optical Parametric Amplifier

3.2.2.3 Supercontinuum Generation

3.3 Transient Absorption Spectroscopy

3.3.1 The Experimental Method

3.3.2 Typical Experimental Setups

3.3.3 Data Analysis and Interpretation

3.4 Ultrafast Fluorescence Spectroscopies

3.4.1 FLUC: The Experimental Method

3.4.2 FLUC: Typical Experimental Setups

3.4.3 FLUC: Data Analysis and Interpretation

3.4.4 Kerr‐Based Femtosecond Fluorescence Spectroscopy

3.5 Femtosecond Stimulated Raman Spectroscopy

3.5.1 The Experimental Method

3.5.2 Typical Experimental Setups

3.5.3 Data Analysis and Interpretation

3.6 Case Studies. 3.6.1 Ultrafast Relaxation Dynamics of Molecules in Solution Phase

3.6.2 Relaxation of Excited Charge Carriers and Excitons in Semiconductor Nanoparticles

3.6.3 Ultrafast Relaxation Dynamics of Carbon‐based Nanomaterials

References

4 Confocal and Two‐Photon Spectroscopy

4.1 Introduction and Historical Perspectives

4.1.1 Point Spread Function and Optical Resolution

4.1.2 Optical Sectioning and Imaging of 3D Samples

4.2 Fluorescence Imaging

4.2.1 Laser Scanning Confocal Fluorescence Microscope

4.2.2 Two‐Photon Microscope

4.2.3 The Importance of Sample Preparation from Solid State to Dynamic Specimens

4.2.4 Setting Up a Measurement

4.3 Spectroscopy Using a Microscope

4.3.1 Observables in Fluorescence Microscopy

4.3.2 Measuring Dynamics: Gaining Information Below Resolution

4.4 Case Studies

4.4.1 Understanding Microstructures and Mechanistic Aspects in Materials

4.4.2 Fluctuation Methods for the Analysis of Nanosystems

References

5 Infrared Absorption Spectroscopy

5.1 Fundamentals

5.1.1 Introduction

5.1.2 Basic Principles

5.1.3 Infrared Spectra

5.1.4 Fourier Transform Infrared Spectrometers (Interferometers)

5.2 Sources and Detectors

5.3 Techniques and Sampling Methods

5.3.1 Transmission Methods

5.3.1.1 Solid Samples

5.3.1.2 Liquid and Solution Samples

5.3.1.3 Gas Samples

5.3.2 Attenuated Total Reflectance (ATR) Method

5.3.3 FTIR Microspectroscopy

5.3.4 AFM‐IR Spectroscopy

5.3.5 Hyphenated Techniques

5.4 Applications and Case Studies

5.4.1 Chemical Characterization and Kinetics

5.4.2 Surfaces

5.4.3 Medical and Life Science (Pharmaceutical, Medical, Biological, Biotechnological)

5.4.4 Cultural Heritage and Forensic

5.4.5 Environmental and Geological

5.4.6 Food Industry

References

6 Raman and Micro‐Raman Spectroscopy

6.1 Basic Theory

6.1.1 Introduction

6.1.2 Spectroscopic Units

6.1.3 Molecular Vibrations

6.1.4 Classical Theory of the Raman Scattering

6.1.5 Simplified Quantum Approach to Raman Scattering

6.1.6 Raman and IR Activities

6.1.7 Crystal Vibrations

6.1.8 Raman Scattering in Crystals

6.1.9 Surface‐Enhanced Raman Scattering (SERS)

6.2 Instrumentation

6.2.1 Laser Sources and Optical Filters

6.2.2 Monochromators

6.2.3 Detectors

6.2.4 Raman Microscopy and Raman Mapping

6.3 Case Studies

6.3.1 Raman Indicators

6.3.2 Identification of Materials and Crystalline Quality

6.3.3 Graphene and Graphite Raman Spectra

6.3.4 Doping Detection

6.3.5 Basic Examples of SERS

References

Note

7 Thermally Stimulated Luminescence

7.1 Theory of Thermally Stimulated Luminescence

7.1.1 Simple Model

7.1.1.1 First‐Order Kinetics

7.1.1.2 Second‐Order Kinetics

7.1.1.3 General‐Order Kinetics

7.1.2 Localized Transitions

7.1.3 Beyond the Ideal Behavior

7.1.3.1 Luminescence Quenching

7.1.3.2 Trap Energy Distributions

7.2 Data Analysis Methods

7.2.1 Initial Rise

7.2.2 Peak Shape

7.2.3 Heating Rate Method

7.2.4 Glow Curve Fit

7.3 Instrumentation and Considerations on Samples

7.4 Case Studies

7.4.1 Lanthanide Energy Level Position in the Bandgap

7.4.2 Bandgap Engineering

7.4.3 Correlation of TSL Data with EPR Results

Note

References

8 Spectroscopic Studies of Radiation Effects on Optical Materials

8.1 Introduction

8.1.1 Radiation Environments

8.1.2 Applications for Optical Materials

8.2 Radiation‐Induced Effects on Optical Materials and Optical Fibers

8.2.1 Radiation‐Induced Attenuation – RIA

8.2.2 Radiation‐Induced Emission – RIE

8.2.3 Radiation‐Induced Compaction – RIC and Refractive Index Change – RIRIC

8.2.4 Origins of Radiation‐Induced Optical Changes

8.3 Radiation‐Induced Attenuation Measurements

8.3.1 Postirradiation RIA Measurements

8.3.1.1 Bulk Glasses

8.3.1.2 Optical Fibers

8.3.2 In Situ RIA Measurements

8.3.2.1 Bulk Glasses

8.3.2.2 Optical Fibers

8.3.2.2.1 Steady State Irradiation

8.3.2.2.2 Pulsed Irradiation

8.3.2.2.3 Hints for Particular Environments, Applications

X‐Ray Testing/Principle

X‐Ray Testing/Implementation

X‐Ray Testing/Advantages and Limitations

γ‐Ray Testing/Principle

γ‐Ray Testing/Implementation

γ‐Ray Testing/Advantages and Limitations

Other Radiation Facilities

8.3.3 Exploitation of RIA Spectra: Point Defect Identification

8.3.3.1 Spectral Decomposition

8.3.3.2 Point Defect Kinetics

8.4 Radiation‐Induced Luminescence (RIL)

8.4.1 Architectures of Fiber‐Based Sensors: Extrinsic and Intrinsic

8.4.2 Calibration of the RIL Versus Proton Flux

8.4.3 Bragg Peak Measurements for Proton‐Therapy Applications

8.5 Case Studies

8.5.1 Characterization of Bulk Glasses for Space Optical Systems

8.5.2 Fiber‐Based Dosimetry with Phosphorus‐Doped Optical Fibers

8.5.3 Proton Flux Measurements Through the RIL of Optical Fibers

References

9 Electron Paramagnetic Resonance Spectroscopy (EPR)

9.1 Introduction

9.2 Basic Principle of EPR

9.3 Anisotropy of g and Spectral Lineshape

9.4 The EPR Lineshape in Powder or in Amorphous

9.5 Hyperfine Interactions

9.6 Paramagnetic Center with S = 1

9.7 Basics of Continuous Wave EPR Setup

9.8 Parameters for EPR Signal Acquisition

9.9 Cw EPR Case Studies

9.10 Time‐Resolved EPR Spectroscopy

9.10.1 Saturation Transients

9.10.2 Spin Nutations

9.10.3 Free Induction Decay

9.10.4 Spin Echo

References

10 Nuclear Magnetic Resonance Spectroscopy

10.1 Introduction

10.2 NMR General Concepts. 10.2.1 Nuclear Spin and Magnetic Moment

10.2.2 Spin Precession and Larmor Frequency

10.2.3 Longitudinal Magnetization

10.2.4 Transverse Magnetization and NMR Signal

10.2.5 Spin Interactions

10.2.6 Fourier Transform NMR

10.3 Liquid‐State NMR. 10.3.1 The NMR Spectrometer

10.3.2 Sample Preparation

10.3.3 How to Set an Experiment

10.3.4 Longitudinal Relaxation Time Measurement

10.3.5 Transverse Relaxation Time Measurement

10.3.6 2D‐Liquid‐State NMR Techniques

10.3.7 Considerations on the Molecular Dynamics by NMR Spectroscopy

10.4 Solid‐State NMR. 10.4.1 Powdered Samples

10.4.2 Cross‐Polarization and Heteronuclear Decoupling

10.4.3 Magic‐Angle Spinning

10.4.4 Homonuclear Dipolar Decoupling

10.4.5 2D‐Solid State NMR Techniques

10.4.6 Recoupling Techniques

10.4.7 Molecular Dynamics by Solid‐State NMR Spectroscopy

10.5 Nonconventional NMR Techniques

10.5.1 Time Domain NMR

10.5.2 Fast Field Cycling NMR Relaxometry

10.5.3 Earth's Magnetic Field NMR

10.6 Case Studies. 10.6.1 Polymers and Polymer‐Based Composites

10.6.2 Mesoporous Materials

10.6.3 Cultural Heritage

10.6.4 Food

10.6.5 Environmental NMR: Rocks, Soils, Waters, Air

10.6.6 NMR of “Exotic” Nuclei

References

11 X‐Ray Absorption Spectroscopy and X‐Ray Raman Scattering Spectroscopy for Energy Applications

11.1 Introduction

11.2 The X‐Ray Absorption Coefficient and the EXAFS Technique

11.2.1 The EXAFS Equation and the Key Approximations

11.2.1.1 Many‐Body Effects

11.2.1.2 Inelastic Effects

11.2.1.2.1 Extrinsic Processes

11.2.1.2.2 Intrinsic Losses

11.2.2 Multiple Scattering Theory: Basic Information

11.2.3 XANES or Near‐Edge X‐Ray Absorption Fine Structure and Pre‐Edge Region

11.3 EXAFS: Data Analysis Overview

11.4 Experimental Setups

11.4.1 Transmission Geometry

11.4.2 Fluorescence Geometry

11.5 X‐Ray Raman Scattering Spectroscopy

11.5.1 Theoretical Background

11.5.2 Experimental Setup. 11.5.2.1 Instrumentation

11.5.2.2 Data Processing

11.6 Case Studies: Application of XAFS and XRS for Energy Materials

11.6.1 CO Oxidation Reaction: The Au/CeO2 Catalyst

11.6.2 Materials for Solid Oxide Fuel Cells

11.6.3 Oxide‐Ion Conductors: Dopants and Vacancies

11.6.4 Proton‐Conducting Oxides

11.6.5 The Role of Oxygen in Fuel Cell Cathodes

References

12 X‐Ray Photoelectron Spectroscopy

12.1 General Principles

12.2 Instrumental Setup

12.2.1 Vacuum and Ultrahigh Vacuum, UHV

12.2.1.1 Roughing Pumps

12.2.1.2 Turbomolecular Pumps

12.2.1.3 Ion Pumps

12.2.1.4 Titanium Sublimation Pumps

12.2.2 Magnetic Shielding

12.2.3 Sources

12.2.4 Sample Manipulators

12.2.5 Charge Neutralization Systems

12.2.5.1 Electron Guns

12.2.5.2 Ion Guns

12.2.6 Analyzers and Detectors

12.3 Applications

12.3.1 Quantitative Analysis

12.3.2 Qualitative Analysis

12.3.3 Surface Maps

12.3.4 Profiles

12.3.4.1 Depth Profiles

12.3.4.2 Angle‐Resolved Profiles

12.4 Data Analysis

12.4.1 Shift Corrections

12.4.2 Background

12.4.3 Line Shapes

12.4.4 Nonlinear Fitting

12.5 Case Studies

12.5.1 Hydrocarbon Contamination

12.5.2 Energy Loss

12.5.3 Depth Profiles/1

12.5.4 Depth Profiles/2

References

Notes

13 Ultraviolet Photoelectron Spectroscopy – Materials Science Technique

13.1 UPS History and Capabilities

13.2 Theory and Experimental Methodology of UPS. 13.2.1 Physical Principles of UPS

13.2.2 Angle‐Resolved UPS

13.3 UPS Experiment and Factors of Influence

13.3.1 Vacuum System and Pumping

13.3.2 Sample and External Spectral Standard Preparation

13.3.3 Ultraviolet Source

13.3.4 Charge Neutralizer

13.3.5 Staff Requirements

References

14 Transmission Electron Spectroscopy

14.1 Empirical Aspects of Electron–Matter Interaction

14.1.1 Fast Electrons Interaction with a Solid

14.1.2 Electron Energy Loss Spectroscopy (EELS)

14.1.2.1 Inner Shell Excitations

14.1.2.2 Low‐Loss Excitations

14.1.2.3 Energy‐Filtered Images

14.2 Instrumental Setups. 14.2.1 TEM in a Nutshell

References

15 Atomic Force Microscopy and Spectroscopy

15.1 Introduction

15.2 The AFM Microscope

15.2.1 The Probe

15.2.2 Harmonic Excitation of the Cantilever

15.2.3 Scanning System

15.2.4 Measurement of the Cantilever's Deflection

15.2.5 Feedback System

15.3 Tip–Surface Interaction Forces

15.3.1 Van der Waals

15.3.2 Short‐Range Repulsive

15.3.3 Adhesion

15.3.4 Capillary

15.3.5 Other Forces

15.4 AFM Acquisition Modes

15.4.1 Contact Mode

15.4.2 Tapping Mode

15.5 AFM Spectroscopy

15.6 Case Studies

15.6.1 Roughness of a Flat Surface

15.6.2 Size Distribution of Nanoparticles

References

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Edited by

.....

(1.68)

Introducing now the rate equation for the excited state

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Spectroscopy for Materials Characterization
Подняться наверх