Communication Networks and Service Management in the Era of Artificial Intelligence and Machine Learning

Communication Networks and Service Management in the Era of Artificial Intelligence and Machine Learning
Автор книги: id книги: 2147689     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 13035,6 руб.     (127,08$) Читать книгу Купить и скачать книгу Электронная книга Жанр: Отраслевые издания Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119675518 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

COMMUNICATION NETWORKS AND SERVICE MANAGEMENT IN THE ERA OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING[/b] [b]Discover the impact that new technologies are having on communication systems with this up-to-date and one-stop resource Communication Networks and Service Management in the Era of Artificial Intelligence and Machine Learning delivers a comprehensive overview of the impact of artificial intelligence (AI) and machine learning (ML) on service and network management. Beginning with a fulsome description of ML and AI, the book moves on to discuss management models, architectures, and frameworks. The authors also explore how AI and ML can be used in service management functions like the generation of workload profiles, service provisioning, and more. The book includes a handpicked selection of applications and case studies, as well as a treatment of emerging technologies the authors predict could have a significant impact on network and service management in the future. Statistical analysis and data mining are also discussed, particularly with respect to how they allow for an improvement of the management and security of IT systems and networks. Readers will also enjoy topics like: A thorough introduction to network and service management, machine learning, and artificial intelligence An exploration of artificial intelligence and machine learning for management models, including autonomic management, policy-based management, intent based ­management, and network virtualization-based management Discussions of AI and ML for architectures and frameworks, including cloud ­systems, software defined networks, 5G and 6G networks, and Edge/Fog networks An examination of AI and ML for service management, including the automatic ­generation of workload profiles using unsupervised learning Perfect for information and communications technology educators, Communication Networks and Service Management in the Era of Artificial Intelligence and Machine Learning will also earn a place in the libraries of engineers and professionals who seek a structured reference on how the emergence of artificial intelligence and machine learning techniques is affecting service and network management.

Оглавление

Группа авторов. Communication Networks and Service Management in the Era of Artificial Intelligence and Machine Learning

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Communication Networks and Service Management in the Era of Artificial Intelligence and Machine Learning

Editor Biographies

List of Contributors

Preface

Acknowledgments

Acronyms

1 Overview of Network and Service Management

1.1 Network and Service Management at Large

1.2 Data Collection and Monitoring Protocols

1.2.1 SNMP Protocol Family

1.2.2 Syslog Protocol

1.2.3 IP Flow Information eXport (IPFIX)

1.2.4 IP Performance Metrics (IPPM)

1.2.5 Routing Protocols and Monitoring Platforms

1.3 Network Configuration Protocol

1.3.1 Standard Configuration Protocols and Approaches

1.3.2 Proprietary Configuration Protocols

1.3.3 Integrated Platforms for Network Monitoring

1.4 Novel Solutions and Scenarios

1.4.1 Software‐Defined Networking – SDN

1.4.2 Network Functions Virtualization – NFV

Bibliography

2 Overview of Artificial Intelligence and Machine Learning

2.1 Overview

2.2 Learning Algorithms

2.2.1 Supervised Learning

2.2.2 Unsupervised Learning

2.2.3 Reinforcement Learning

2.3 Learning for Network and Service Management

Bibliography

Note

3 Managing Virtualized Networks and Services with Machine Learning

3.1 Introduction

3.2 Technology Overview

3.2.1 Virtualization of Network Functions

3.2.1.1 Resource Partitioning

3.2.1.2 Virtualized Network Functions

3.2.2 Link Virtualization

3.2.2.1 Physical Layer Partitioning

3.2.2.2 Virtualization at Higher Layers

3.2.3 Network Virtualization

3.2.4 Network Slicing

3.2.5 Management and Orchestration

3.3 State‐of‐the‐Art. 3.3.1 Network Virtualization

3.3.2 Network Functions Virtualization. 3.3.2.1 Placement

3.3.2.2 Scaling

3.3.3 Network Slicing. 3.3.3.1 Admission Control

3.3.3.2 Resource Allocation

3.4 Conclusion and Future Direction

3.4.1 Intelligent Monitoring

3.4.2 Seamless Operation and Maintenance

3.4.3 Dynamic Slice Orchestration

3.4.4 Automated Failure Management

3.4.5 Adaptation and Consolidation of Resources

3.4.6 Sensitivity to Heterogeneous Hardware

3.4.7 Securing Machine Learning

Bibliography

4 Self‐Managed 5G Networks1

4.1 Introduction

4.2 Technology Overview

4.2.1 RAN Virtualization and Management

4.2.2 Network Function Virtualization

4.2.3 Data Plane Programmability

4.2.4 Programmable Optical Switches

4.2.5 Network Data Management

4.3 5G Management State‐of‐the‐Art

4.3.1 RAN resource management. 4.3.1.1 Context‐Based Clustering and Profiling for User and Network Devices

4.3.1.2 ‐Learning Based RAN Resource Allocation

4.3.1.3 vrAIn: AI‐Assisted Resource Orchestration for Virtualized Radio Access Networks

4.3.2 Service Orchestration

4.3.3 Data Plane Slicing and Programmable Traffic Management

4.3.4 Wavelength Allocation

4.3.5 Federation

4.4 Conclusions and Future Directions

Bibliography

Notes

5 AI in 5G Networks: Challenges and Use Cases

5.1 Introduction

5.2 Background

5.2.1 ML in the Networking Context

5.2.2 ML in Virtualized Networks

5.2.3 ML for QoE Assessment and Management

5.3 Case Studies

5.3.1 QoE Estimation and Management

5.3.1.1 Main Challenges

5.3.1.2 Methodology

5.3.1.3 Results and Guidelines

5.3.2 Proactive VNF Deployment

5.3.2.1 Problem Statement and Main Challenges

5.3.2.2 Methodology

5.3.2.3 Evaluation Results and Guidelines

5.3.3 Multi‐service, Multi‐domain Interconnect

5.4 Conclusions and Future Directions

Bibliography

Note

6 Machine Learning for Resource Allocation in Mobile Broadband Networks

6.1 Introduction

6.2 ML in Wireless Networks

6.2.1 Supervised ML

6.2.1.1 Classification Techniques

6.2.1.2 Regression Techniques

6.2.2 Unsupervised ML

6.2.2.1 Clustering Techniques

6.2.2.2 Soft Clustering Techniques

6.2.3 Reinforcement Learning

6.2.4 Deep Learning

6.2.5 Summary

6.3 ML‐Enabled Resource Allocation

6.3.1 Power Control. 6.3.1.1 Overview

6.3.1.2 State‐of‐the‐Art

6.3.1.3 Lessons Learnt

6.3.2 Scheduling. 6.3.2.1 Overview

6.3.2.2 State‐of‐the‐Art

6.3.2.3 Lessons Learnt

6.3.3 User Association. 6.3.3.1 Overview

6.3.3.2 State‐of‐the‐Art

6.3.3.3 Lessons Learnt

6.3.4 Spectrum Allocation. 6.3.4.1 Overview

6.3.4.2 State‐of‐the‐Art

6.3.4.3 Lessons Learnt

6.4 Conclusion and Future Directions

6.4.1 Transfer Learning

6.4.2 Imitation Learning

6.4.3 Federated‐Edge Learning

6.4.4 Quantum Machine Learning

Bibliography

Note

7 Reinforcement Learning for Service Function Chain Allocation in Fog Computing

7.1 Introduction

7.2 Technology Overview

7.2.1 Fog Computing (FC)

7.2.2 Resource Provisioning

7.2.3 Service Function Chaining (SFC)

7.2.4 Micro‐service Architecture

7.2.5 Reinforcement Learning (RL)

7.3 State‐of‐the‐Art

7.3.1 Resource Allocation for Fog Computing

7.3.2 ML Techniques for Resource Allocation

7.3.3 RL Methods for Resource Allocation

7.4 A RL Approach for SFC Allocation in Fog Computing

7.4.1 Problem Formulation

7.4.2 Observation Space

7.4.3 Action Space

7.4.4 Reward Function

7.4.5 Agent

7.5 Evaluation Setup

7.5.1 Fog–Cloud Infrastructure

7.5.2 Environment Implementation

7.5.3 Environment Configuration

7.6 Results

7.6.1 Static Scenario

7.6.2 Dynamic Scenario

7.7 Conclusion and Future Direction

Bibliography

Note

8 Designing Algorithms for Data‐Driven Network Management and Control: State‐of‐the‐Art and Challenges1

8.1 Introduction

8.1.1 Contributions

8.1.2 Exemplary Network Use Case Study

8.2 Technology Overview

8.2.1 Data‐Driven Network Optimization

8.2.2 Optimization Problems over Graphs

8.2.3 From Graphs to ML/AI Input

8.2.4 End‐to‐End Learning

8.3 Data‐Driven Algorithm Design: State‐of‐the Art

8.3.1 Data‐Driven Optimization in General

8.3.2 Data‐Driven Network Optimization

8.3.3 Non‐graph Related Problems

8.4 Future Direction

8.4.1 Data Production and Collection

8.4.2 ML and AI Advanced Algorithms for Network Management with Performance Guarantees

8.5 Summary

Acknowledgments

Bibliography

Note

9 AI‐Driven Performance Management in Data‐Intensive Applications

9.1 Introduction

9.2 Data‐Processing Frameworks

9.2.1 Apache Storm

9.2.2 Hadoop MapReduce

9.2.3 Apache Spark

9.2.4 Apache Flink

9.3 State‐of‐the‐Art

9.3.1 Optimal Configuration

9.3.1.1 Traditional Approaches

9.3.1.2 AI Approaches

9.3.1.3 Example: AI‐Based Optimal Configuration

9.3.2 Performance Anomaly Detection

9.3.2.1 Traditional Approaches

9.3.2.2 AI Approaches

9.3.2.3 Example: ANNs‐Based Anomaly Detection

9.3.3 Load Prediction

9.3.3.1 Traditional Approaches

9.3.3.2 AI Approaches

9.3.4 Scaling Techniques

9.3.4.1 Traditional Approaches

9.3.4.2 AI Approaches

9.3.5 Example: RL‐Based Auto‐scaling Policies

9.4 Conclusion and Future Direction

Bibliography

Notes

10 Datacenter Traffic Optimization with Deep Reinforcement Learning

10.1 Introduction

10.2 Technology Overview

10.2.1 Deep Reinforcement Learning (DRL)

10.2.2 Applying ML to Networks

10.2.3 Traffic Optimization Approaches in Datacenter

10.2.4 Example: DRL for Flow Scheduling

10.2.4.1 Flow Scheduling Problem

10.2.4.2 DRL Formulation

10.2.4.3 DRL Algorithm

10.3 State‐of‐the‐Art: AuTO Design

10.3.1 Problem Identified

10.3.2 Overview

10.3.3 Peripheral System

10.3.3.1 Enforcement Module

10.3.3.2 Monitoring Module

10.3.4 Central System

10.3.5 DRL Formulations and Solutions

10.3.5.1 Optimizing MLFQ Thresholds

10.3.5.2 Optimizing Long Flows

10.4 Implementation

10.4.1 Peripheral System

10.4.1.1 Monitoring Module (MM):

10.4.1.2 Enforcement Module (EM):

10.4.2 Central System

10.4.2.1 sRLA

10.4.2.2 lRLA

10.5 Experimental Results

10.5.1 Setting

10.5.2 Comparison Targets

10.5.3 Experiments. 10.5.3.1 Homogeneous Traffic

10.5.3.2 Spatially Heterogeneous Traffic

10.5.3.3 Temporally and Spatially Heterogeneous Traffic

10.5.4 Deep Dive

10.5.4.1 Optimizing MLFQ Thresholds using DRL

10.5.4.2 Optimizing Long Flows using DRL

10.5.4.3 System Overhead

10.6 Conclusion and Future Directions

Bibliography

Notes

11 The New Abnormal: Network Anomalies in the AI Era

11.1 Introduction

11.2 Definitions and Classic Approaches

11.2.1 Definitions

11.2.2 Anomaly Detection: A Taxonomy

11.2.3 Problem Characteristics

11.2.4 Classic Approaches

11.3 AI and Anomaly Detection

11.3.1 Methodology

11.3.2 Deep Neural Networks

11.3.3 Representation Learning

11.3.4 Autoencoders

11.3.5 Generative Adversarial Networks

11.3.6 Reinforcement Learning

11.3.7 Summary and Takeaways

11.4 Technology Overview

11.4.1 Production‐Ready Tools

11.4.2 Research Alternatives

11.4.3 Summary and Takeaways

11.5 Conclusions and Future Directions

Bibliography

Notes

12 Automated Orchestration of Security Chains Driven by Process Learning*

12.1 Introduction

12.2 Related Work

12.2.1 Chains of Security Functions

12.2.2 Formal Verification of Networking Policies

12.3 Background

12.3.1 Flow‐Based Detection of Attacks

12.3.2 Programming SDN Controllers

12.4 Orchestration of Security Chains

12.5 Learning Network Interactions

12.6 Synthesizing Security Chains

12.7 Verifying Correctness of Chains

12.7.1 Packet Routing

12.7.2 Shadowing Freedom and Consistency

12.8 Optimizing Security Chains

12.9 Performance Evaluation

12.9.1 Complexity of Security Chains

12.9.2 Response Times

12.9.3 Accuracy of Security Chains

12.9.4 Overhead Incurred by Deploying Security Chains

12.10 Conclusions

Bibliography

Notes

13 Architectures for Blockchain‐IoT Integration1

13.1 Introduction

13.1.1 Blockchain Basics

13.1.2 Internet‐of‐Things (IoT) Basics

13.2 Blockchain‐IoT Integration (BIoT)

13.2.1 BIoT Potentials

13.2.2 BIoT Use Cases

13.2.3 BIoT Challenges

13.2.3.1 Scalability

13.2.3.2 Security

13.2.3.3 Energy Efficiency

13.2.3.4 Manageability

13.3 BIoT Architectures

13.3.1 Cloud, Fog, and Edge‐Based Architectures

13.3.2 Software‐Defined Architectures

13.3.3 A Potential Standard BIoT Architecture

13.4 Summary and Considerations

Bibliography

Note

Index. a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

y

z

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Edited by Nur Zincir–Heywood, Marco Mellia, and Yixin Diao

.....

Hong Kong SAR, China

Lina Magoula

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Communication Networks and Service Management in the Era of Artificial Intelligence and Machine Learning
Подняться наверх