Computational Intelligence and Healthcare Informatics

Computational Intelligence and Healthcare Informatics
Автор книги: id книги: 2155469     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 21722,2 руб.     (211,77$) Читать книгу Купить и скачать книгу Электронная книга Жанр: Программы Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119818694 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

AI techniques are being successfully used in the fields of health to increase the efficacy of therapies and avoid the risks of false diagnosis, therapeutic decision-making, and outcome prediction in many clinical cases, thanks to the rapid advancement of technology. The acquisition, analysis, and application of a vast amount of information required to solve complex problems is a challenge for modern health therapies. The 21 chapters in this integrate several aspects of computational intelligence like machine learning and deep learning from diversified perspectives. The purpose of the book is to endow to different communities with their innovative advances in theory, analytical approaches, numerical simulation, statistical analysis, modeling, advanced deployment, case studies, analytical results, computational structuring and significance progress in healthcare applications.

Оглавление

Группа авторов. Computational Intelligence and Healthcare Informatics

Table of Contents

List of Figures

List of Table

Guide

Pages

Computational Intelligence and Healthcare Informatics

Preface

1. Machine Learning and Big Data: An Approach Toward Better Healthcare Services

1.1 Introduction

1.2 Machine Learning in Healthcare

1.3 Machine Learning Algorithms

1.3.1 Supervised Learning

1.3.2 Unsupervised Learning

1.3.3 Semi-Supervised Learning

1.3.4 Reinforcement Learning

1.3.5 Deep Learning

1.4 Big Data in Healthcare

1.5 Application of Big Data in Healthcare. 1.5.1 Electronic Health Records

1.5.2 Helping in Diagnostics

1.5.3 Preventive Medicine

1.5.4 Precision Medicine

1.5.5 Medical Research

1.5.6 Cost Reduction

1.5.7 Population Health

1.5.8 Telemedicine

1.5.9 Equipment Maintenance

1.5.10 Improved Operational Efficiency

1.5.11 Outbreak Prediction

1.6 Challenges for Big Data

1.7 Conclusion

References

2. Thoracic Image Analysis Using Deep Learning

2.1 Introduction

2.2 Broad Overview of Research

2.2.1 Challenges

2.2.2 Performance Measuring Parameters

2.2.3 Availability of Datasets

2.3 Existing Models

2.4 Comparison of Existing Models

2.5 Summary

2.6 Conclusion and Future Scope

References

3. Feature Selection and Machine Learning Models for High-Dimensional Data: State-of-the-Art

3.1 Introduction

3.1.1 Motivation of the Dimensionality Reduction

3.1.2 Feature Selection and Feature Extraction

3.1.3 Objectives of the Feature Selection

3.1.4 Feature Selection Process

3.2 Types of Feature Selection

3.2.1 Filter Methods

3.2.1.1 Correlation-Based Feature Selection

3.2.1.2 The Fast Correlation-Based Filter

3.2.1.3 The INTERACT Algorithm

3.2.1.4 ReliefF

3.2.1.5 Minimum Redundancy Maximum Relevance

3.2.2 Wrapper Methods

3.2.3 Embedded Methods

3.2.4 Hybrid Methods

3.3 Machine Learning and Deep Learning Models

3.3.1 Restricted Boltzmann Machine

3.3.2 Autoencoder

3.3.3 Convolutional Neural Networks

3.3.4 Recurrent Neural Network

3.4 Real-World Applications and Scenario of Feature Selection

3.4.1 Microarray

3.4.2 Intrusion Detection

3.4.3 Text Categorization

3.5 Conclusion

References

4. A Smart Web Application for Symptom-Based Disease Detection and Prediction Using State-of-the-Art ML and ANN Models

4.1 Introduction

4.2 Literature Review

4.3 Dataset, EDA, and Data Processing

4.4 Machine Learning Algorithms

4.4.1 Multinomial Naïve Bayes Classifier

4.4.2 Support Vector Machine Classifier

4.4.3 Random Forest Classifier

4.4.4 K-Nearest Neighbor Classifier

4.4.5 Decision Tree Classifier

4.4.6 Logistic Regression Classifier

4.4.7 Multilayer Perceptron Classifier

4.5 Work Architecture

4.6 Conclusion

References

5. Classification of Heart Sound Signals Using Time-Frequency Image Texture Features

5.1 Introduction

5.1.1 Motivation

5.2 Related Work

5.3 Theoretical Background

5.3.1 Pre-Processing Techniques

5.3.2 Spectrogram Generation

5.3.2 Feature Extraction

5.3.4 Feature Selection

5.3.5 Support Vector Machine

5.4 Proposed Algorithm

5.5 Experimental Results

5.5.1 Database

5.5.2 Evaluation Metrics

5.5.3 Confusion Matrix

5.5.4 Results and Discussions

5.6 Conclusion

References

6. Improving Multi-Label Classification in Prototype Selection Scenario

6.1 Introduction

6.2 Related Work

6.3 Methodology

Algorithm 6.1 Prototype selection based on the DBSCAN clustering algorithm

Algorithm 6.2 Prototype selection based on the SUBCLU clustering algorithm

6.3.1 Experiments and Evaluation

6.4 Performance Evaluation

6.5 Experiment Data Set

6.6 Experiment Results

6.7 Conclusion

References

7. A Machine Learning–Based Intelligent Computational Framework for the Prediction of Diabetes Disease

7.1 Introduction

7.2 Materials and Methods

7.2.1 Dataset

7.2.2 Proposed Framework for Diabetes System

7.2.3 Pre-Processing of Data

7.3 Machine Learning Classification Hypotheses

7.3.1 K-Nearest Neighbor

7.3.2 Decision Tree

7.3.3 Random Forest

7.3.4 Logistic Regression

7.3.5 Naïve Bayes

7.3.6 Support Vector Machine

7.3.7 Adaptive Boosting

7.3.8 Extra-Tree Classifier

7.4 Classifier Validation Method

7.4.1 K-Fold Cross-Validation Technique

7.5 Performance Evaluation Metrics

7.6 Results and Discussion

7.6.1 Performance of All Classifiers Using 5-Fold CV Method

7.6.2 Performance of All Classifiers Using the 7-Fold Cross-Validation Method

7.6.3 Performance of All Classifiers Using 10-Fold CV Method

7.7 Conclusion

References

8. Hyperparameter Tuning of Ensemble Classifiers Using Grid Search and Random Search for Prediction of Heart Disease

8.1 Introduction

8.2 Related Work

8.3 Proposed Method

8.3.1 Dataset Description

8.3.2 Ensemble Learners for Classification Modeling

8.3.2.1 Bagging Ensemble Learners

Algorithm 8.1 Bagging ensemble learner

8.3.2.2 Boosting Ensemble Learner

Algorithm 8.2 AdaBoost learner

Algorithm 8.3 Gradient boosting learner

8.3.3 Hyperparameter Tuning of Ensemble Learners

8.3.3.1 Grid Search Algorithm

8.3.3.2 Random Search Algorithm

8.4 Experimental Outcomes and Analyses. 8.4.1 Characteristics of UCI Heart Disease Dataset

8.4.2 Experimental Result of Ensemble Learners and Performance Comparison

8.4.3 Analysis of Experimental Result

8.5 Conclusion

References

9. Computational Intelligence and Healthcare Informatics Part III—Recent Development and Advanced Methodologies

9.1 Introduction: Simulation in Healthcare

9.2 Need for a Healthcare Simulation Process

9.3 Types of Healthcare Simulations

9.4 AI in Healthcare Simulation

9.4.1 Machine Learning Models in Healthcare Simulation

9.4.1.1 Machine Learning Model for Post-Surgical Risk Prediction

9.4.1.1.1 High-Level Machine Learning Model Architecture

9.4.1.1.2 ML Methods, Evaluation, and Optimization

9.4.2 Deep Learning Models in Healthcare Simulation

9.4.2.1 Bi-LSTM–Based Surgical Participant Prediction Model

9.4.2.1.1 Basic LSTM Unit

9.4.2.1.2 Bidirectional LSTM Model Network Architecture

9.5 Conclusion

References

10. Wolfram’s Cellular Automata Model in Health Informatics

10.1 Introduction

10.2 Cellular Automata

10.3 Application of Cellular Automata in Health Science

10.4 Cellular Automata in Health Informatics

10.5 Health Informatics–Deep Learning–Cellular Automata

10.6 Conclusion

References

11. COVID-19: Classification of Countries for Analysis and Prediction of Global Novel Corona Virus Infections Disease Using Data Mining Techniques

11.1 Introduction

11.2 Literature Review

11.3 Data Pre-Processing

11.4 Proposed Methodologies

11.4.1 Simple Linear Regression

11.4.2 Association Rule Mining

Algorithm 11.1 Apriori method [26]

11.4.3 Back Propagation Neural Network

Algorithm 11.2 Levenberg Marquardt (LM) [4, 9]

11.5 Experimental Results

11.6 Conclusion and Future Scopes

References

12. Sentiment Analysis on Social Media for Emotional Prediction During COVID-19 Pandemic Using Efficient Machine Learning Approach

12.1 Introduction

12.2 Literature Review

12.3 System Design

12.3.1 Extracting Feature With WMAR

12.4 Result and Discussion

12.5 Conclusion

References

13. Primary Healthcare Model for Remote Area Using Self-Organizing Map Network

13.1 Introduction

13.2 Background Details and Literature Review

13.2.1 Fuzzy Set

13.2.2 Self-Organizing Mapping

13.3 Methodology

13.3.1 Severity_Factor of Patient

13.3.2 Clustering by Self-Organizing Mapping

Algorithm 13.1 Self-Organizing Algorithm

13.4 Results and Discussion

13.5 Conclusion

References

14. Face Mask Detection in Real-Time Video Stream Using Deep Learning

14.1 Introduction

14.2 Related Work

14.3 Proposed Work

14.3.1 Dataset Description

14.3.2 Data Pre-Processing and Augmentation

14.3.3 VGG19 Architecture and Implementation

14.3.4 Face Mask Detection From Real-Time Video Stream

14.4 Results and Evaluation

14.5 Conclusion

References

15. A Computational Intelligence Approach for Skin Disease Identification Using Machine/Deep Learning Algorithms

15.1 Introduction

15.2 Research Problem Statements

15.3 Dataset Description

15.4 Machine Learning Technique Used for Skin Disease Identification

15.4.1 Logistic Regression

15.4.1.1 Logistic Regression Assumption

15.4.1.2 Logistic Sigmoid Function

15.4.1.3 Cost Function and Gradient Descent

15.4.2 SVM

15.4.3 Recurrent Neural Networks

15.4.4 Decision Tree Classification Algorithm

15.4.5 CNN

15.4.6 Random Forest

15.5 Result and Analysis

15.6 Conclusion

References

16. Asymptotic Patients’ Healthcare Monitoring and Identification of Health Ailments in Post COVID-19 Scenario

16.1 Introduction

16.1.1 Motivation

16.1.2 Contributions

16.1.3 Paper Organization

16.1.4 System Model Problem Formulation

16.1.5 Proposed Methodology

16.2 Material Properties and Design Specifications. 16.2.1 Hardware Components. 16.2.1.1 Microcontroller

16.2.1.2 ESP8266 Wi-Fi Shield

16.2.2 Sensors. 16.2.2.1 Temperature Sensor (LM 35)

16.2.2.2 ECG Sensor (AD8232)

16.2.2.3 Pulse Sensor

16.2.2.4 GPS Module (NEO 6M V2)

16.2.2.5 Gyroscope (GY-521)

16.2.3 Software Components. 16.2.3.1 Arduino Software

16.2.3.2 MySQL Database

16.2.3.3 Wireless Communication

16.3 Experimental Methods and Materials. 16.3.1 Simulation Environment

16.3.1.1 System Hardware

16.3.1.2 Connection and Circuitry

16.3.1.2.1 Creation of Database and Website. 16.3.1.2.1.1 HOSTING PHP APPLICATION AND CREATION OF MYSQL DATABASE

16.3.1.2.1.2 CREATION OF API (APPLICATION PROGRAMMING INTERFACES) KEY

16.3.1.2.1.3 PREPARING MySQL DATABASE

16.3.1.2.1.4 CREATION AND INSERTION OF VALUES IN SQL TABLE

16.3.1.2.1.5 Adding Dynamic Graph to the Website

16.3.1.3 Protocols Used. 16.3.1.3.1 TCP/IP

16.3.1.3.2 UART

16.3.1.3.3 I2C Protocol

16.3.1.3.4 MQTT

16.3.1.4 Libraries Used. 16.3.1.4.1 ESP8266WiFi.h

16.3.1.4.2 ESP8266HTTPClient.h

16.3.1.4.3 Pulse-Sensor-Playground.h

16.3.1.4.4 Tinygpsplus.h

16.3.1.4.5 Adafruit-Sensor-Master

16.4 Simulation Results

16.5 Conclusion

16.6 Abbreviations and Acronyms

References

17. COVID-19 Detection System Using Cellular Automata–Based Segmentation Techniques

17.1 Introduction

17.2 Literature Survey

17.2.1 Cellular Automata

17.2.2 Image Segmentation

17.2.3 Deep Learning Techniques

17.3 Proposed Methodology

17.4 Results and Discussion

17.5 Conclusion

References

18. Interesting Patterns From COVID-19 Dataset Using Graph-Based Statistical Analysis for Preventive Measures

18.1 Introduction

18.2 Methods. 18.2.1 Data

18.3 GSA Model: Graph-Based Statistical Analysis

18.4 Graph-Based Analysis

18.4.1 Modeling Your Data as a Graph

18.4.2 RDF for Knowledge Graph

18.4.3 Knowledge Graph Representation

18.4.4 RDF Triple for KaTrace

18.4.5 Cipher Query Operation on Knowledge Graph

18.4.5.1 Inter-District Travel

18.4.5.2 Patient 653 Spread Analysis

18.4.5.3 Spread Analysis Using Parent-Child Relationships

18.4.5.4 Delhi Congregation Attended the Patient’s Analysis

18.5 Machine Learning Techniques

18.5.1 Apriori Algorithm

18.5.2 Decision Tree Classifier

18.5.3 System Generated Facts on Pandas

18.5.4 Time Series Model

18.6 Exploratory Data Analysis

18.6.1 Statistical Inference

18.7 Conclusion

18.8 Limitations

Acknowledgments

Abbreviations

References

19. Conceptualizing Tomorrow’s Healthcare Through Digitization

19.1 Introduction

19.2 Importance of IoMT in Healthcare

19.3 Case Study I: An Integrated Telemedicine Platform in Wake of the COVID-19 Crisis. 19.3.1 Introduction to the Case Study

19.3.2 Merits

19.3.3 Proposed Design. 19.3.3.1 Homecare

19.3.3.2 Healthcare Provider

19.3.3.3 Community

19.4 Case Study II: A Smart Sleep Detection System to Track the Sleeping Pattern in Patients Suffering From Sleep Apnea. 19.4.1 Introduction to the Case Study

19.4.2 Proposed Design

19.5 Future of Smart Healthcare

19.6 Conclusion

References

20. Domain Adaptation of Parts of Speech Annotators in Hindi Biomedical Corpus: An NLP Approach

20.1 Introduction

20.1.1 COVID-19 Pandemic Situation

20.1.2 Salient Characteristics of Biomedical Corpus

20.2 Review of Related Literature. 20.2.1 Biomedical NLP Research

20.2.2 Domain Adaptation

20.2.3 POS Tagging in Hindi

20.3 Scope and Objectives. 20.3.1 Research Questions

20.3.2 Research Problem

20.3.3 Objectives

20.4 Methodological Design. 20.4.1 Method of Data Collection

20.4.2 Method of Data Annotation

20.4.2.1 The BIS Tagset

20.4.2.2 ILCI Semi-Automated Annotation Tool

20.4.2.3 IA Agreement

20.4.3 Method of Data Analysis

20.4.3.1 The Theory of Support Vector Machines

20.4.3.2 Experimental Setup

20.5 Evaluation

20.5.1 Error Analysis

20.5.2 Fleiss’ Kappa

20.6 Issues

20.7 Conclusion and Future Work

Acknowledgements

References

21. Application of Natural Language Processing in Healthcare

21.1 Introduction

21.2 Evolution of Natural Language Processing

21.3 Outline of NLP in Medical Management

21.4 Levels of Natural Language Processing in Healthcare

21.5 Opportunities and Challenges From a Clinical Perspective

21.5.1 Application of Natural Language Processing in the Field of Medical Health Records

21.5.2 Using Natural Language Processing for Large-Sample Clinical Research

21.6 Openings and Difficulties From a Natural Language Processing Point of View

21.6.1 Methods for Developing Shareable Data

21.6.2 Intrinsic Evaluation and Representation Levels

21.6.3 Beyond Electronic Health Record Data

21.7 Actionable Guidance and Directions for the Future

21.8 Conclusion

References

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Scrivener Publishing

.....

21. Raghu, A., Komorowski, M., Ahmed, I., Celi, L.A., Szolovits, P., Ghassemi, M., Deep reinforcement learning for sepsis treatment. CoRR, 2017, abs/1711.09602.

22. https://news.stanford.edu/2017/01/25/artificial-intelligence-used-identify-skin-cancer (dated: 13-09-2020)

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Computational Intelligence and Healthcare Informatics
Подняться наверх