Computation in BioInformatics

Computation in BioInformatics
Автор книги: id книги: 2178856     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 21722,2 руб.     (204,56$) Читать книгу Купить и скачать книгу Электронная книга Жанр: Базы данных Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119654766 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

COMPUTATION IN BIOINFORMATICS Bioinformatics is a platform between the biology and information technology and this book provides readers with an understanding of the use of bioinformatics tools in new drug design. The discovery of new solutions to pandemics is facilitated through the use of promising bioinformatics techniques and integrated approaches. This book covers a broad spectrum of the bioinformatics field, starting with the basic principles, concepts, and application areas. Also covered is the role of bioinformatics in drug design and discovery, including aspects of molecular modeling. Some of the chapters provide detailed information on bioinformatics related topics, such as silicon design, protein modeling, DNA microarray analysis, DNA-RNA barcoding, and gene sequencing, all of which are currently needed in the industry. Also included are specialized topics, such as bioinformatics in cancer detection, genomics, and proteomics. Moreover, a few chapters explain highly advanced topics, like machine learning and covalent approaches to drug design and discovery, all of which are significant in pharma and biotech research and development. Audience Researchers and engineers in computation biology, information technology, bioinformatics, drug design, biotechnology, pharmaceutical sciences.

Оглавление

Группа авторов. Computation in BioInformatics

Table of Contents

Guide

List of Illustrations

List of Tables

Pages

Computation in Bioinformatics. Multidisciplinary Applications

Preface

1. Bioinfomatics as a Tool in Drug Designing

1.1 Introduction

1.2 Steps Involved in Drug Designing

1.2.1 Identification of the Target Protein/Enzyme

1.2.2 Detection of Molecular Site (Active Site) in the Target Protein

1.2.3 Molecular Modeling

1.2.4 Virtual Screening

1.2.5 Molecular Docking

1.2.6 QSAR (Quantitative Structure-Activity Relationship)

1.2.7 Pharmacophore Modeling

1.2.8 Solubility of Molecule

1.2.9 Molecular Dynamic Simulation

1.2.10 ADME Prediction

1.3 Various Softwares Used in the Steps of Drug Designing

1.4 Applications

1.5 Conclusion

References

2. New Strategies in Drug Discovery

2.1 Introduction

2.2 Road Toward Advancement

2.3 Methodology

2.3.1 Target Identification

2.3.2 Docking-Based Virtual Screening

2.3.3 Conformation Sampling

2.3.4 Scoring Function

2.3.5 Molecular Similarity Methods

2.3.6 Virtual Library Construction

2.3.7 Sequence-Based Drug Design

2.4 Role of OMICS Technology

2.5 High-Throughput Screening and Its Tools

2.6 Chemoinformatic

2.6.1 Exploratory Data Analysis

2.6.2 Example Discovery

2.6.3 Pattern Explanation

2.6.4 New Technologies

2.7 Concluding Remarks and Future Prospects

References

3. Role of Bioinformatics in Early Drug Discovery: An Overview and Perspective

3.1 Introduction

3.2 Bioinformatics and Drug Discovery

3.2.1 Structure-Based Drug Design (SBDD)

3.2.2 Ligand-Based Drug Design (LBDD)

3.3 Bioinformatics Tools in Early Drug Discovery

3.3.1 Possible Biological Activity Prediction Tools

3.3.2 Possible Physicochemical and Drug-Likeness Properties Verification Tools

3.3.3 Possible Toxicity and ADME/T Profile Prediction Tools

3.4 Future Directions With Bioinformatics Tool

3.5 Conclusion

Acknowledgements

References

4. Role of Data Mining in Bioinformatics

4.1 Introduction

4.2 Data Mining Methods/Techniques

4.2.1 Classification. 4.2.1.1 Statistical Techniques

4.2.1.2 Clustering Technique

4.2.1.3 Visualization

4.2.1.4 Induction Decision Tree Technique

4.2.1.5 Neural Network

4.2.1.6 Association Rule Technique

4.2.1.7 Classification

4.3 DNA Data Analysis

4.4 RNA Data Analysis

4.5 Protein Data Analysis

4.6 Biomedical Data Analysis

4.7 Conclusion and Future Prospects

References

5. In Silico Protein Design and Virtual Screening

5.1 Introduction

5.2 Virtual Screening Process

5.2.1 Before Virtual Screening

5.2.2 General Process of Virtual Screening

5.2.2.1 Step 1 (The Establishment of the Receptor Model)

5.2.2.2 Step 2 (The Generation of Small-Molecule Libraries)

5.2.2.3 Step 3 (Molecular Docking)

5.2.2.4 Step 4 (Selection of Lead Protein Compounds)

5.3 Machine Learning and Scoring Functions

5.4 Conclusion and Future Prospects

References

6. New Bioinformatics Platform-Based Approach for Drug Design

6.1 Introduction

6.2 Platform-Based Approach and Regulatory Perspective

6.3 Bioinformatics Tools and Computer-Aided Drug Design

6.4 Target Identification

6.5 Target Validation

6.6 Lead Identification and Optimization

6.7 High-Throughput Methods (HTM)

6.8 Conclusion and Future Prospects

References

7. Bioinformatics and Its Application Areas

7.1 Introduction

7.2 Review of Bioinformatics

7.3 Bioinformatics Applications in Different Areas

7.3.1 Microbial Genome Application

7.3.2 Molecular Medicine

7.3.3 Agriculture

7.4 Conclusion

References

8. DNA Microarray Analysis: From Affymetrix CEL Files to Comparative Gene Expression

8.1 Introduction

8.2 Data Processing. 8.2.1 Installation of Workflow

8.2.2 Importing the Raw Data for Processing

8.2.3 Retrieving Sample Annotation of the Data

8.2.4 Quality Control

8.2.4.1 Boxplot

8.2.4.2 Density Histogram

8.2.4.3 MA Plot

8.2.4.4 NUSE Plot

8.2.4.5 RLE Plot

8.2.4.6 RNA Degradation Plot

8.2.4.7 QCstat

8.3 Normalization of Microarray Data Using the RMA Method

8.3.1 Background Correction

8.3.2 Normalization

8.3.3 Summarization

8.4 Statistical Analysis for Differential Gene Expression

8.5 Conclusion

References

9. Machine Learning in Bioinformatics

9.1 Introduction and Background

9.1.1 Bioinformatics

9.1.2 Text Mining

9.1.3 IoT Devices

9.2 Machine Learning Applications in Bioinformatics

9.3 Machine Learning Approaches

9.4 Conclusion and Closing Remarks

References

10. DNA-RNA Barcoding and Gene Sequencing

10.1 Introduction

10.2 RNA

10.3 DNA Barcoding. 10.3.1 Introduction

10.3.2 DNA Barcoding and Molecular Phylogeny

10.3.3 Ribosomal DNA (rDNA) of the Nuclear Genome (nuDNA)—ITS

10.3.4 Chloroplast DNA

10.3.5 Mitochondrial DNA

10.3.6 Molecular Phylogenetic Analysis

10.3.7 Metabarcoding

10.3.8 Materials for DNA Barcoding

10.4 Main Reasons of DNA Barcoding

10.5 Limitations/Restrictions of DNA Barcoding

10.6 RNA Barcoding

10.6.1 Overview of the Method

10.7 Methodology

10.7.1 Materials Required

10.7.2 Barcoded RNA Sequencing High-Level Mapping of Single-Neuron Projections

10.7.3 Using RNA to Trace Neurons

10.7.4 A Life Conservation Barcoder

10.7.5 Gene Sequencing

10.7.5.1 DNA Sequencing Methods

10.7.5.2 First-Generation Sequencing Techniques

10.7.5.3 Maxam’s and Gilbert’s Chemical Method

10.7.5.4 Sanger Sequencing

10.7.5.5 Automation in DNA Sequencing

10.7.5.6 Use of Fluorescent-Marked Primers and ddNTPs

10.7.5.7 Dye Terminator Sequencing

10.7.5.8 Using Capillary Electrophoresis

10.7.6 Developments and High-Throughput Methods in DNA Sequencing

10.7.7 Pyrosequencing Method

10.7.8 The Genome Sequencer 454 FLX System

10.7.9 Illumina/Solexa Genome Analyzer

10.7.10 Transition Sequencing Techniques

10.7.11 Ion-Torrent’s Semiconductor Sequencing

10.7.12 Helico’s Genetic Analysis Platform

10.7.13 Third-Generation Sequencing Techniques

10.8 Conclusion

Abbreviations

Acknowledgement

References

11. Bioinformatics in Cancer Detection

11.1 Introduction

11.2 The Era of Bioinformatics in Cancer

11.3 Aid in Cancer Research via NCI

11.4 Application of Big Data in Developing Precision Medicine

11.5 Historical Perspective and Development

11.6 Bioinformatics-Based Approaches in the Study of Cancer

11.6.1 SLAMS

11.6.2 Module Maps

11.6.3 COPA

11.7 Conclusion and Future Challenges

References

12. Genomic Association of Polycystic Ovarian Syndrome: Single-Nucleotide Polymorphisms and Their Role in Disease Progression

12.1 Introduction

12.2 FSHR Gene

12.3 IL-10 Gene

12.4 IRS-1 Gene

12.5 PCR Primers Used

12.6 Statistical Analysis

12.7 Conclusion

References

13. An Insight of Protein Structure Predictions Using Homology Modeling

13.1 Introduction

13.2 Homology Modeling Approach

13.2.1 Strategies for Homology Modeling

13.2.2 Procedure

13.3 Steps Involved in Homology Modeling

13.3.1 Template Identification

13.3.2 Sequence Alignment

13.3.3 Backbone Generation

13.3.4 Loop Modeling

13.3.5 Side Chain Modeling

13.3.6 Model Optimization

13.3.6.1 Model Validation

13.4 Tools Used for Homology Modeling. 13.4.1 Robetta

13.4.2 M4T (Multiple Templates)

13.4.3 I-Tasser (Iterative Implementation of the Threading Assembly Refinement)

13.4.4 ModBase

13.4.5 Swiss Model

13.4.6 PHYRE2 (Protein Homology/Analogy Recognition Engine 2)

13.4.7 Modeller

13.4.8 Conclusion

Acknowledgement

References

14. Basic Concepts in Proteomics and Applications

14.1 Introduction

14.2 Challenges on Proteomics

14.3 Proteomics Based on Gel

14.4 Non-Gel–Based Electrophoresis Method

14.5 Chromatography

14.6 Proteomics Based on Peptides

14.7 Stable Isotopic Labeling

14.8 Data Mining and Informatics

14.9 Applications of Proteomics

14.10 Future Scope

14.11 Conclusion

References

15. Prospects of Covalent Approaches in Drug Discovery: An Overview

15.1 Introduction

15.2 Covalent Inhibitors Against the Biological Target

15.3 Application of Physical Chemistry Concepts in Drug Designing

15.4 Docking Methodologies—An Overview

15.5 Importance of Covalent Targets

15.6 Recent Framework on the Existing Docking Protocols

15.7 SN2 Reactions in the Computational Approaches

15.8 Other Crucial Factors to Consider in the Covalent Docking. 15.8.1 Role of Ionizable Residues

15.8.2 Charge Regulation

15.8.3 Charge-Charge Interactions

15.9 QM/MM Approaches

15.10 Conclusion and Remarks

Acknowledgements

References

Index

Also of Interest. Check out these published and forthcoming related titles from Scrivener Publishing

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Scrivener Publishing 100 Cummings Center, Suite 541J Beverly, MA 01915-6106

.....

2. Luscombe, N.M., Greenbaum, D., Gerstein, M., What is Bioinformatics? A Proposed Definition and Overview of the Field. Methods Inf. Med., 40, 4, 346–58, 2001.

3. Kumar, A. and Chordia, N., Role of Bioinformatics in Biotechnology. Res. Rev. Biosci., 12, 1, 116, 2017.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Computation in BioInformatics
Подняться наверх