Materials for Solar Energy Conversion

Materials for Solar Energy Conversion
Автор книги: id книги: 2190329     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 21722,2 руб.     (216,75$) Читать книгу Купить и скачать книгу Электронная книга Жанр: Техническая литература Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119752172 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

MATERIALS FOR SOLAR ENERGY CONVERSION This book provides professionals and students with a resource on the basic principles and applications of solar energy materials and processes, as well as practicing engineers who want to understand how functional materials operate in solar energy conversion systems. The demand for energy is increasing daily, and the development of sustainable power generation is a critical issue. In order to overcome the energy demand, power generation through solar energy is booming. Many research works have attempted to enhance the efficiency of collection and storage of solar energy and, as a result, numerous advanced functional materials have been developed for enhancing the performance of solar cells. This book has compiled and broadly explores the latest developments of materials, methods, and applications of solar energy. The book is divided into 2 parts, in which the first part deals with solar cell fundamentals and emerging categories, and the latter part deals with materials, methods, and applications in order to fill the gap between existing technologies and practical requirements. The book presents detailed chapters including organic, inorganic, coating materials, and collectors. The use of modern computer simulation techniques, conversion and storage processes are effectively covered. Topics such as nanostructured solar cells, battery materials, etc. are included in this book as well. Audience The book is aimed at researchers in materials science, chemistry, physics, electrical and mechanical engineering working in the fields of nanotechnology, photovoltaic device technology, and solar energy.

Оглавление

Группа авторов. Materials for Solar Energy Conversion

Table of Contents

Guide

List of Illustrations

List of Tables

Pages

Materials for Solar Energy Conversion. Materials, Methods and Applications

Preface

1. Introduction to Solar Energy Conversion

1.1 Introduction

1.2 Forms of Energy

1.3 Solar Radiation

1.4 Heat Transfer Principles

1.4.1 Conduction

1.4.2 Convection

1.4.3 Radiation

1.5 Basic Laws of Radiation. 1.5.1 Stefan-Boltzmann Law

1.5.2 Planck’s Law

1.5.3 Wien’s Displacement Law

1.6 Solar Energy Conversion

1.6.1 Sources of Renewable and Non-Renewable Energy

1.6.2 Differentiate Between Renewable and Non-Renewable Energy Sources

1.7 Photo-Thermal Conversion System

1.7.1 Flat Plate Collector

1.7.2 Evacuated Solar Collector

1.8 Thermal Applications

1.8.1 Solar Water Heating Systems

1.8.2 Steam Generation

1.9 Solar Drying

1.9.1 Natural Circulation Methods

1.9.2 Forced Circulation Systems

1.10 Photovoltaic Conversion

1.10.1 Photovoltaic Effect

1.10.2 Applications

1.11 Photovoltaic Thermal Systems

1.12 Conclusion

References

2. Development of Solar Cells

Abbreviations

2.1 Introduction

2.2 First-Generation PV Cells

2.2.1 Single-Crystalline PV Cells

2.3 Second-Generation Solar PV Technology

2.3.1 Amorphous Silicon PV Cell

2.3.2 Cadmium Telluride PV Cell

2.3.3 Copper Indium Gallium Diselenide PV Cells

2.4 Third-Generation PV Cells

2.4.1 Copper Zinc Tin Sulfide PV Cell

2.4.2 Dye Sensitized PV Cell

2.4.3 Organic PV Cell

2.4.4 Perovskite PV Solar Cells

2.4.5 Polymer Photovoltaic Cell

2.4.6 Quantum Dot Photovoltaic Cell

2.5 Conclusion

References

3. Recycling of Solar Panels

Abbreviations

3.1 Introduction

3.2 PV and Recycling Development Worldwide

3.2.1 Causes of Inability in Solar PV Panel

3.3 Current Recycling and Recovery Techniques. 3.3.1 Methods for Recycling

3.3.2 Physical Separation

3.3.3 Thermal and Chemical-Based Treatment

3.4 Strategies for Recycling Processes

3.5 Approaches for Recycling of Solar Panel

3.5.1 Component Repair

3.5.2 Module Separation

3.5.3 Decomposition of Silicon and Precious Industrial Minerals From Modules

3.6 Global Surveys in PV Recycling Technology

3.7 Ecological and Economic Impacts

3.7.1 Evolutionary Factors

3.7.2 Socio-Economic Concerns

3.8 Conclusion

References

4. Multi-Junction Solar Cells

Abbreviation

4.1 Introduction

4.1.1 Theory of Multi-Junction Cells

4.2 Key Issues for Realizing the Efficiency of MJCs

4.2.1 Preference of Top Layer Materials and Enhancing the Quality

4.2.2 Low-Loss Tunneling Junction for Intercell Connection and Preventing Impurity Diffusion From Tunneling Junction

4.2.3 Lattice-Matching Between Cell Materials and Substrates

4.2.4 Effectiveness of Wide-Bandgap Back Surface Field (BSF) Layer

4.3 Structure of Multi-Junction Cell

4.3.1 Multi-Junction Cell With BSF Layer

4.3.2 Optimization of BSF Layers

4.4 Novel Materials for Multi-Junction Cells

4.5 Applications

4.6 Conclusions

References

5. Perovskite Solar Cells

5.1 Introduction

5.2 Structure and Working

5.3 Fabrication of Simple Perovskite Solar Cell

5.4 Fabrication Methods

5.4.1 Spin Coating

5.4.2 Blade Coating

5.4.3 Slot-Die Coating

5.4.4 Inkjet Printing

5.4.5 Screen Printing

5.4.6 Electrodeposition

5.4.7 Vapor-Phase Deposition

5.5 Stability of Perovskite Solar Cell

5.6 Losses in Solar Cells

5.7 Conclusion

References

6. Natural Dye-Sensitized Solar Cells

Abbreviations

6.1 Introduction

6.2 Dye-Sensitized Solar Cells (DSSCs)

6.2.1 The Structure and Operation Principle

6.2.2 Performance Parameters of DSSCs

6.2.2.1 Open Circuit Voltage

6.2.2.2 Short Circuit Current

6.2.2.3 Fill Factor

6.2.2.4 Efficiency

6.3 Dye (Photosensitizer)

6.3.1 Natural Dyes

6.3.2 Plant Pigments. 6.3.2.1 Anthocyanin

6.3.2.2 Chlorophylls

6.3.2.3 Betalain

6.3.2.4 Carotenoids

6.3.3 Photoconversion Efficiency of Natural Dyes Employed as Dye Sensitizers—Notable Studies

6.4 Conclusion

References

7. Organic Materials and Their Processing Techniques

7.1 Introduction

7.2 Organic Materials

7.2.1 Organic Solar Cell

7.2.2 Challenges in Organic Solar Cells

7.2.3 Focus Area to Overcome the Challenges

7.2.4 Operation of Organic Solar Cells

7.2.5 Organic Solar Cell Device Architecture

7.2.5.1 Single Active-Layer Device

7.2.5.2 Double Active-Layer Device

7.2.5.3 Bulk Heterojunction Photovoltaic Cell

7.3 Electrical Characteristics of OPVs

7.3.1 Open-Circuit Voltage

7.3.2 Short-Circuit Current

7.3.3 Maximum Power Point

7.3.4 Fill Factor

7.3.5 Power Conversion Efficiency

7.3.6 Quantum Efficiency

7.4 Potential Materials for OPV Applications

7.4.1 Electron-Donor Materials

7.4.2 Electron-Acceptor Materials

7.5 Conclusion

References

8. Inorganic Materials and Their Processing Techniques

8.1 Introduction

8.2 Functional Inorganic Materials

8.3 Comprehensive Processing Strategy

8.4 Solid-Phase Processing. 8.4.1 Ceramic Method

8.4.2 Microwave Technique

8.4.3 Combustion Synthesis

8.4.4 Mechanochemical Synthesis

8.4.5 Carbothermal Reduction

8.4.6 Friction Consolidation

8.4.7 3D Printing Technique

8.4.8 Nanolithography Technique

8.5 Solution-Phase Processing. 8.5.1 Sol-Gel Process

8.5.2 Hydrothermal and Solvothermal Process

8.5.3 Sonochemical Synthesis

8.5.4 Surface Coating Technique

8.5.5 Spray Pyrolysis Technique

8.5.6 Electroplating and Electrodeposition Process

8.5.7 Liquid Printing Technique

8.5.8 Liquid-Phase Laser Ablation Technique

8.5.9 Electrospinning and Electrospraying Technique

8.6 Gas-Phase Processing. 8.6.1 Physical Vapor Deposition Technique

8.6.2 Chemical Vapor Deposition Technique

8.6.3 Inert Gas Condensation Technique

8.6.4 Molecular Beam Epitaxy Technique

8.6.5 Gas-Phase Flame Spray Pyrolysis

8.7 Challenges in Nanomaterial Production and Processing

8.8 Conclusion and Perspectives

References

9. 2D Materials for Solar Cell Applications

9.1 Introduction

9.2 Fundamental Principles of Solar Cell

9.3 Fabrication Methods for the Generation of Solar Cell

9.3.1 Spin Coating

9.3.2 Spray Coating

9.3.3 Doctor Blading

9.3.4 Slot-Die Coating

9.3.5 Vacuum Deposition/Chemical Vapor Deposition

9.3.6 Screen Printing

9.4 Introduction to 2D Materials

9.4.1 Graphene

9.4.2 Boron Nitride

9.4.3 Molybdenum Disulfide

9.4.4 MXenes

9.4.5 Other 2D Materials

9.5 Solar Cell Application of 2D Materials. 9.5.1 2D Materials for Organic Solar Cells

9.5.2 2D Materials for Perovskite Solar Cells

9.5.3 2D Materials for Dye-Sensitized Solar Cells (DSSCs)

9.5.4 2D Materials for Other Solar Cell

9.6 Conclusions

References

10. Nanostructured Materials and Their Processing Techniques

10.1 Introduction

10.2 The Need for Solar Energy

10.2.1 Solar Photovoltaic Cell

10.2.2 Solar Thermal Heating

10.3 Nanoscience and Nanotechnology

10.4 Nanotechnology in Solar Energy

10.4.1 Nanomaterials

10.4.2 Properties of Nanomaterials

10.4.3 Nanofluids

10.5 The Outlook of Nanomaterials in the Performance of Solar Cells

10.6 Photovoltaic-Based Nanomaterials and Synthesis Techniques

10.6.1 Sol-Gel Method

10.6.2 Hydrothermal Method

10.6.3 Solvothermal Technique

10.6.4 Co-Precipitation Technique

10.6.5 Magnetron Sputtering

10.6.6 Spin Coating

10.6.7 Chemical Vapor Deposition Technique

10.6.7.1 Atmospheric Pressure Chemical Vapor Deposition Method

10.6.7.2 Plasma-Enhanced Vapor Deposition Method

10.7 Nanofluids in Solar Collectors

10.8 Nanofluids in Solar Stills

10.9 Conclusion

References

11. Coating Materials, Methods, and Techniques

11.1 Introduction

11.2 Thin Film Deposition Techniques

11.2.1 Advantages of Thin Films

11.3 Anti-Reflection Thin Films

11.4 Methods of Thin Film Growth

11.4.1 Physical Vapor Deposition

11.4.2 Thermal Evaporation Process

11.4.3 Pulsed Laser Deposition

11.4.4 Sputter Deposition

11.4.5 Chemical Vapor Deposition

11.4.6 Plasma-Enhanced CVD Method

11.4.7 Electrochemical Deposition

11.4.8 Sol-Gel Thin Film Formation

11.5 Thin Film Characterization

11.5.1 X-ray Diffraction

11.5.2 Fourier Transform Infrared Spectroscopy

11.5.3 Thermogravimetry and Differential Thermal Analysis

11.5.4 UV-Visible Spectroscopy

11.5.5 Field Emission Scanning Electron Microscope

11.5.6 High-Resolution Transmission Electron Microscope

11.5.7 Atomic Force Microscopy

11.5.8 Four-Probe Technique

11.6 Performance Analysis of ARC Coated Solar Cells

11.7 Conclusion

References

12. Anti-Reflection Coating

12.1 Introduction

12.2 Anti-Reflection Coating

12.2.1 Types of Anti-Reflection Coating

12.2.2 Textured Coating

12.2.3 Anti-Reflection Coating With Self-Cleaning

12.3 Perspectives on ARC Materials

12.3.1 Silicon-Based Material

12.3.2 TiO2-Based Material

12.3.3 Carbon-Based Material

12.3.4 Gallium-Based Material

12.3.5 Polymer-Based Material

12.3.6 Organic-Based Material

12.4 Techniques for Coating ARC

12.4.1 Sol-Gel Technique

12.4.1.1 Spin Coating Technique

12.4.1.2 Dip Coating Technique

12.4.1.3 Meniscus Coating Technique

12.4.2 Physical Vapor Deposition

12.4.2.1 Thermal Evaporation Technique

12.4.2.2 Electron Beam Technique

12.4.3 RF and DC Magnetron Sputtering Technique

12.4.4 Chemical Vapor Deposition

12.4.5 Electrospinning Technique

12.4.6 Spray Pyrolysis Technique

12.4.7 Lithography

12.4.8 Comparison of Coating Techniques

12.5 Literature Studies: Impact of ARC on Performance of Solar Cell

12.6 Conclusion

References

13. Thermal Energy Storage and Its Applications

13.1 Introduction

13.2 Types of ES

13.2.1 Mechanical ES

13.2.1.1 Flywheel Storage

13.2.1.2 Pumped Water Storage

13.2.1.3 Compressed Air Storage

13.2.2 Electrochemical ES

13.2.3 Thermal Energy Storage

13.2.4 Advantages of TES

13.3 Methods of TES

13.3.1 Sensible Heat Storage

13.3.1.1 Properties of SHS Materials

13.3.2 Latent Heat Storage

13.3.2.1 Properties of LHS Materials or PCMs

13.3.2.2 Classification of PCMs

13.3.3 Thermochemical ES

13.4 Applications of TES

13.4.1 SHS Applications. 13.4.1.1 Solar Pond

13.4.1.2 Solar Water Heating

13.4.1.3 Packed Rock Bed Storage

13.4.2 Latent Heat Storage Applications

13.4.2.1 Encapsulation of PCM

13.4.2.2 Solar Water Heater With LHS

13.4.2.3 TES for Building Application

13.4.2.4 Numerical Studies on TES

13.5 Conclusion

References

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Scrivener Publishing 100 Cummings Center, Suite 541J Beverly, MA 01915-6106

.....

In an industrial process, a huge amount of heated fluid is needed for a certain operations. In such cases, the lower temperature fluid produced from thermo syphon method is not opted.

The number of solar collectors unit is connected in a series of array along with a external pumping system to circulate the fluid passage. Figure 1.6 is the schematic diagram of forced circulation solar water heating system especially for industrial purposes like factories and hospitals.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Materials for Solar Energy Conversion
Подняться наверх