Non-halogenated Flame Retardant Handbook
Реклама. ООО «ЛитРес», ИНН: 7719571260.
Оглавление
Группа авторов. Non-halogenated Flame Retardant Handbook
Table of Contents
List of Illustrations
List of Tables
Guide
Pages
Non-Halogenated Flame Retardant Handbook 2nd Edition
Preface to the 2nd Edition of the Non-Halogenated Flame Retardant Handbook
1. Regulations and Other Developments/Trends/Initiatives Driving Non-Halogenated Flame Retardant Use
1.1 Regulatory History of Halogenated vs. Non-Halogenated Flame Retardants
1.2 Regulations of Fire Safety and Flame Retardant Chemicals
1.3 Current Regulations
1.3.1 International – United Nations
1.3.2 United States (Federal vs. State)
1.3.3 Canada
1.3.4 European Union
1.3.5 Asia
1.3.6 China
1.3.7 Japan
1.3.8 Korea
1.3.9 Australia
1.4 Fire Safety and Non-Fire Safety Issues Requiring Non-Halogenated Flame Retardants
1.5 Regulatory Outlook and Future Market Drivers
References
2. Phosphorus-Based Flame Retardants
2.1 Introduction
2.2 Main Classes of Phosphorus-Based Flame Retardants
2.3 Red Phosphorus
2.4 Ammonium and Amine Phosphates
2.5 Metal Hypophosphites, Phosphites and Dialkyl Phosphinates
2.6 Aliphatic Phosphates and Phosphonates
2.7 Aromatic Phosphates and Phosphonates
2.8 Aromatic Phosphinates
2.9 Phosphine Oxides
2.10 Phosphazenes
2.11 Environmental Fate and Exposure to Organophosphorus FRs
2.12 Conclusions and Further Trends
References
3. Mineral Filler Flame Retardants
3.1 Introduction
3.2 Industrial Importance of Mineral Flame Retardants
3.2.1 Market Share of Mineral FRs
3.2.2 Synthetic Mineral FRs within the Industrial Chemical Process Chain
3.2.3 Natural Mineral FRs
3.3 Overview of Mineral Filler FRs
3.3.1 Mineral Filler Flame Retardants by Chemistry
3.3.2 Classification by Production Process
3.3.2.1 Crushing and Grinding
3.3.2.2 Air Classification
3.3.2.3 Precipitation and Their Synthetic Processes
3.3.2.4 Surface Treatment
3.3.3 Physical Characterisation of Mineral FRs
3.3.3.1 Particle Shape/Morphology/Aspect Ratio
3.3.3.2 Particle Size Distribution
3.3.3.3 Sieve Residue
3.3.3.4 BET Surface Area
3.3.3.5 Oil Absorption
3.3.3.6 pH-Value/Specific Conductivity
3.3.3.7 Bulk Density and Powder Flowability
3.3.3.8 Thermal Stability/Loss on Ignition/Endothermic Heat
3.3.4 General Impact of Mineral FRs on Polymer Material Properties
3.3.4.1 Optical Properties
3.3.4.2 Mechanical Properties
3.3.4.3 Water Uptake and Chemical Resistance
3.3.4.4 Thermal Properties
3.3.4.5 Electrical Properties
3.3.4.6 Rheological Properties
3.4 Working Principle of Hydrated Mineral Flame Retardants
3.4.1 Filler Loading, Flammability and Flame Propagation
3.4.2 Smoke Suppression
3.4.3 Heat Release
3.5 Thermoplastic and Elastomeric Applications. 3.5.1 Compounding Technology
3.5.2 Compound Formulation Principals
3.5.3 Wire &Cable
3.5.4 Other Construction Products
3.5.5 Special Applications
3.5.6 Engineering Plastics for E&E Applications
3.6 Reactive Resins/Thermoset Applications
3.6.1 Production Processes for Glass Fiber-Reinforced Polymer Composite
3.6.1.1 Paste Production
3.6.1.2 Hand Lamination/Hand-Lay-Up
3.6.1.3 SMC and BMC
3.6.1.4 Pultrusion
3.6.1.5 RTM/RIM
3.6.2 Formulation Principles
3.6.3 Public Transport Applications of GFRP
3.6.4 E&E Applications
3.6.5 Construction and Industrial Applications
3.7 Conclusion, Trends and Challenges
References
4. Intumescence-Based Flame Retardant
4.1 Introduction
4.2 Fundamentals of Intumescence
4.3 Intumescence on the Market
4.4 Reaction to Fire of Intumescent Materials
4.5 Resistance to Fire of Intumescent Materials
4.6 Conclusion and Future Trends
References
5. Nitrogen-Based Flame Retardants
5.1 Introduction
5.2 Main Types of Nitrogen-Based Flame Retardants
5.3 Ammonia-Based Flame Retardants
5.3.1 Ammonium Polyphosphate
5.3.2 Other Ammonia Salts
5.4 Melamine-Based Flame Retardants
5.4.1 Melamine as Flame Retardant
5.4.2 Melamine Salts
5.4.3 Melamine Cyanurate
5.4.4 Melamine Polyphosphate
5.4.5 Melamine Condensates and Its Salts
5.5 Nitrogen-Based Radical Generators
5.6 Phosphazenes, Phospham and Phosphoroxynitride
5.7 Cyanuric-Acid Based Flame Retardants
5.8 Summary and Conclusion
References
6. Silicon-Based Flame Retardants
6.1 Introduction
6.2 Basics of Silicon Chemistry
6.3 Industrial Applications of Silicones
6.4 Silicon-Based Materials as Flame Retardant Materials
6.4.1 Inorganic Silicon-Based Flame Retardants. 6.4.1.1 Silicon Dioxide (SiO2) (Silica)
6.4.1.2 Wollastonite
6.4.1.3 Magadiite
6.4.1.4 Sepiolite
6.4.1.5 Kaolin
6.4.1.6 Mica
6.4.1.7 Talc
6.4.1.8 Halloysite
6.4.1.9 Layered Silicate Nanocomposites
6.4.1.10 Sodium Silicate
6.4.1.11 Silsesquioxane
6.4.2 Organic Silicone-Based Flame Retardants. 6.4.2.1 Polyorganosiloxanes
6.4.2.2 Silanes
6.4.3 Other Silicone-Based Flame Retardants
6.4.4 Silicone/Silica Protective Coatings
6.5 Mode of Actions of Silicone-Based Flame Retardants and Practical Use Considerations. 6.5.1 Silicon Dioxide
6.5.2 Silicate-Based Minerals
6.5.3 Silicones
6.6 Future Trends in Silicon-Based Flame Retardants
6.7 Summary and Conclusions
References
7. Boron-Based Flame Retardants in Non-Halogen Based Polymers
7.1 Introduction
7.2 Major Functions of Borates in Flame Retardancy
7.3 Major Commercial Boron-Based Flame Retardants and Their Applications
7.4 Properties and Applications of Boron-Base Flame Retardants
7.4.1 Boric Acid [B2O3·3H2O/B(OH)3], Boric Oxide (B2O3)
7.4.2 Alkaline Metal Borate. 7.4.2.1 Borax Pentahydrate (Na2O·2B2O3·5H2O), Borax Decahydrate (Na2O·2B2O3·10H2O)
7.4.2.2 Disodium Octaborate Tetrahydrate (Na2O·4B2O3·4H2O)
7.4.3 Alkaline-Earth Metal Borate. 7.4.3.1 Calcium Borates (xCaO·yB2O3·zH2O)
7.4.3.2 Magnesium Borate (xMgO·yB2O3·zH2O)
7.4.4 Transition Metal Borates. 7.4.4.1 Zinc Borates (xZnO·yB2O3·zH2O)
7.4.4.1.1 Firebrake ZB (2ZnO·3B2O3·3.5H2O) and Firebrake 500 (2ZnO·3B2O3)
7.4.4.1.2 Miscellaneous Metal Borates
7.4.5 Nitrogen-Containing Borates. 7.4.5.1 Melamine Diborate [(C3H8N6)O·B2O3·2H2O)]/(C3H6N6·2H3BO3 )
7.4.5.2 Ammonium Pentaborate [(NH4)2O·5B2O3·8H2O)]
7.4.5.3 Boron Nitride (h-BN)
7.4.5.4 Ammonium Borophosphate
7.4.6 Phosphorus-Containing Borates. 7.4.6.1 Boron Phosphate (BPO4)
7.4.6.2 Metal Borophosphate
7.4.7 Silicon-Containing Borates
7.4.7.1 Borosilicate Glass and Frits
7.4.8 Carbon-Containing Boron or Borates. 7.4.8.1 Graphene (Boron-Doped)
7.4.8.2 Boric Acid Esters [B(OR)3]
7.4.8.3 Boronic Acid [ArB(OH)2]
7.4.8.4 Boron Carbide (B4C)
7.5 Mode of Actions of Boron-Based Flame Retardants
7.6 Conclusions
References
8. Non-Halogenated Conformal Flame Retardant Coatings
List of Acronyms
8.1 Introduction to Conformal Coatings: The Role of Surface During Combustion
8.2 Fabrics
8.2.1 Natural Fabrics
8.2.2 Synthetic Fabrics and Blends
8.2.3 Process Equipment and Related Patents
8.3 Porous Materials
8.3.1 Open Cell PU Foams
8.3.2 Other Porous Substrates
8.3.3 Process Equipment and Related Patents
8.4 Other Substrates
8.5 Future Trends and Needs
References
9. Multicomponent Flame Retardants
9.1 The Need for Multicomponent Flame Retardants
9.2 Concepts
9.3 Combination with Fillers
9.4 Adjuvants
9.5 Synergists
9.6 Combinations of Different Flame Retardants
9.7 Combinations of Different Flame-Retardant Groups in One Flame Retardant
9.8 Conclusion
References
10. Other Non-Halogenated Flame Retardants and Future Fire Protection Concepts & Needs
10.1 The Periodic Table of Flame Retardants
10.2 Transition Metal Flame Retardants
10.2.1 Vapor Phase Transition Metal Flame Retardants
10.2.2 Condensed Phase Transition Metal Flame Retardants
10.2.2.1 Metal Oxides
10.2.2.2 Metal Complexes
10.3 Sulfur-Based Flame Retardants
10.4 Carbon-Based Flame Retardants
10.4.1 Cross-Linking Compounds – Alkynes, Deoxybenzoin, Friedel-Crafts, Nitriles, Anhydrides
10.4.1.1 Alkynes
10.4.1.2 Deoxybenzoin
10.4.1.3 Friedel-Crafts
10.4.1.4 Nitriles
10.4.1.5 Anhydrides
10.4.2 Organic Carbonates
10.4.3 Graft Copolymerization
10.4.4 Expandable Graphite
10.5 Bio-Based Materials
10.6 Tin-Based Flame Retardants. 10.6.1 Introduction
10.6.2 Zinc Stannates
10.6.3 Halogen-Free Applications
10.6.3.1 Polyolefins
10.6.3.2 Styrenics
10.6.3.3 Engineering Plastics
10.6.3.4 Thermosetting Resins
10.6.3.5 Elastomers
10.6.3.6 Paints and Coatings
10.6.3.7 Textiles
10.6.4 Novel Tin Additives
10.6.4.1 Coated Fillers
10.6.4.2 Tin-Modified Nanoclays
10.6.4.3 Mechanism of Action
10.6.4.4 Summary
10.7 Polymer Nanocomposites
10.8 Engineering Non-Hal FR Solutions
10.8.1 Barrier Fabrics
10.8.2 Coatings
10.8.2.1 Inorganic Coatings
10.8.2.2 IR Reflective Coatings
10.8.2.3 Nanoparticle Coatings
10.8.2.4 Conformal/Integrated Coatings
10.9 Future Directions
10.9.1 Polymeric Flame Retardants and Reactive Flame Retardants
10.9.2 End of Life Considerations For Flame Retardants
10.9.3 New and Growing Fire Risk Scenarios
10.9.4 Experimental Methodology for Flame Retardant Screening
References
Index
WILEY END USER LICENSE AGREEMENT
Отрывок из книги
Scrivener Publishing 100 Cummings Center, Suite 541J Beverly, MA 01915-6106
.....
164. F. de Campo, A. Murillo, J. Li, T. Zhang, Flame retardant polymer compositions comprising stabilized hypophosphite salts, PCT Patent Application WO 2012/113145, assigned to Rhodia, August 30, 2012.
165. Y. Hirschsohn and E. Eden, Flame-retarded styrene-containing formulations, PCT Patent Application WO 2018/178985, assigned to Bromine Compounds, October 4, 2018.
.....