Bioprospecting of Microorganism-Based Industrial Molecules

Реклама. ООО «ЛитРес», ИНН: 7719571260.
Оглавление
Группа авторов. Bioprospecting of Microorganism-Based Industrial Molecules
Table of Contents
List of Tables
List of Illustrations
Guide
Pages
Bioprospecting of Microorganism‐Based Industrial Molecules
About the Editors
List of Contributors
Preface
Acknowledgments
1 An Introduction to Microbial Biodiversity and Bioprospection
1.1 Introduction. 1.1.1 Microorganisms
1.1.2 Bioprospecting
1.1.3 Bioprospection of Microorganisms
1.2 Conclusions and Perspectives
Acknowledgment
References
2 Application of Microorganisms in Biosurfactant Production
2.1 Biosurfactants Nature and Classification
2.2 Biosynthesis of BS by Archaea and Bacteria
2.3 Biosynthesis of BS by Yeasts and Molds
2.4 Screening for BS Producers
2.5 A Case Study: SL by Solid‐State Fermentation (SSF), Kinetics, and Reactor Size Estimation
2.6 Conclusions and Perspectives
References
3 Microbial Gums: Current Trends and Applications
3.1 Introduction
3.2 Biosynthesis of Microbial Gums
3.3 Production of Microbial Gums
3.4 Structure and Properties of Microbial Gums
3.5 Types of Microbial Gums
3.5.1 Xanthan Gum
3.5.2 Sphingans
3.5.2.1 Gellan Gum
3.5.2.2 Welan Gum
3.5.2.3 Rhamsan Gum
3.5.2.4 Diutan Gum
3.5.3 Pullulan
3.5.4 Other Microbial Gums
3.6 Applications of Microbial Gums
3.6.1 Food Applications
3.6.2 Biomedical Applications
3.6.3 Applications in Nanotechnology
3.7 Conclusions and Perspectives
Acknowledgments
References
4 Antiaging and Skin Lightening Microbial Products
4.1 Introduction
4.2 Aging
4.2.1 Structure of Skin
4.2.2 Skin Aging Factors
4.2.3 Intrinsic Skin Aging Factors. 4.2.3.1 Anatomical and Histological Changes
4.2.3.2 Telomere Shortening
4.2.3.3 Metabolic ROS Production
4.2.3.4 Upregulation of Matrix Metalloproteinases
4.2.3.5 Mitochondrial Dysfunction
4.2.3.6 Mutations and Oncogenesis
4.3 Extrinsic Skin Aging Factors
4.3.1 Photoaging
4.3.2 Tobacco Smoking
4.3.3 Air Pollution
4.4 Why Microbes
4.4.1 Bacterial Compounds
4.4.2 Polysaccharides and Oligosaccharides. 4.4.2.1 Hyaluronic Acid
4.4.2.2 Bacterial Cellulose
4.4.2.3 Astaxanthin and Equol
4.4.3 Fungi Compounds. 4.4.3.1 Tyrosinase Inhibition
4.4.3.2 Hyaluronidase Inhibition
4.4.3.3 Collagenase and Elastase Inhibition
4.4.4 Algae Compounds
4.4.4.1 Carbohydrates from Algae
4.4.4.2 Fucoidan
4.4.4.3 Laminaran
4.4.4.4 Ulvans
4.4.4.5 Porphyran
4.4.4.6 Carrageenan
4.4.4.7 Agar
4.4.4.8 Alginic Acids
4.4.5 Pigments from Algae
4.4.5.1 Phycobiliproteins
4.4.5.2 Chlorophylls
4.4.5.3 Carotenoids
4.4.5.4 β‐carotene
4.4.5.5 Canthaxanthins
4.4.5.6 Astaxanthin
4.4.5.7 Fucoxanthin
4.4.5.8 Zeaxanthin
4.4.5.9 Violaxanthin
4.4.6 Secondary Metabolites
4.5 Conclusions and Perspectives
References
5 Application of Microorganisms in Bioremediation
5.1 Introduction
5.2 Microbial Bioremediation
5.3 Microbial Bioremediation of Organic Pollutants
5.3.1 Bioremediation of Alkanes
5.3.2 Bioremediation of Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX)
5.3.3 Bioremediation of Polyaromatic Hydrocarbons
5.3.3.1 Degradation of High‐Molecular‐Weight Polyaromatic Hydrocarbons
5.3.4 Fungal Degradation of Polyaromatic Hydrocarbons
5.3.4.1 Bioremediation of PAHs by Ligninolytic Fungi
5.3.4.2 Catabolism of PAHs by Non‐Ligninolytic Fungi
5.3.5 Bioremediation of Pesticides by Microbes
5.4 Microbial Degradation of Heavy Metals
5.5 Factors Affecting Bioremediation
5.5.1 Abiotic Factors
5.5.2 Biotic Factors
5.6 Advances in Bioremediation
5.7 Conclusions and Perspectives
References
6 Microbial Applications in Organic Acid Production
6.1 Introduction
6.2 Glycolic acid (2C)
6.3 Acetic Acid (2C)
6.4 Pyruvic Acid (3C)
6.5 Lactic Acid (3C)
6.6 Succinic Acid (4C)
6.7 Fumaric Acid (4C)
6.8 Malic Acid (4C)
6.9 Itaconic Acid (5C)
6.10 Gluconic Acid (6C)
6.11 Citric Acid (6C)
6.12 Kojic Acid (6C)
6.13 Muconic and Adipic Acid (C6)
6.14 Conclusions and Perspectives
Acknowledgments
References
7 Production of Bioactive Compounds vs. Recombinant Proteins
7.1 Introduction
7.2 In vitro Cell‐Based Assays
7.3 Cell Viability Assays
7.4 Cell Metabolic Assays
7.5 Cell Survival Assays
7.6 Cell Transformation Assays
7.7 Cell Irritation Assays
7.8 Heterologous Expression of Recombinant Proteins of Biomedical Relevance
7.9 Lactic Acid Bacteria and the Production of Metabolites with Therapeutic Roles
7.10 Preclinical Studies
7.10.1 Acute Toxicity
7.10.2 Repeated Dose Toxicity
7.10.3 Genotoxicity
7.10.4 Carcinogenicity
7.10.5 Reproductive Toxicity
7.11 Computer‐aided Drug Design
7.12 Conclusions and Perspectives
References
8 Microbial Production of Antimicrobial and Anticancerous Biomolecules
8.1 Introduction
8.2 Microbial Sources
8.2.1 Bacteria
8.2.2 Fungi
8.2.3 Actinomycetes
8.2.4 Extremophiles
8.3 Microbial Bioprospecting Methods
8.3.1 Cultural Bioprospecting
8.3.2 Nonculturable Microorganism's Bioprospecting
8.3.3 In Silico Bioprospecting of Microorganisms
8.4 Bioactive Compounds
8.4.1 Antibiotics
8.4.2 Bacteriocins
8.4.3 Biosurfactants
8.4.4 Exopolysaccharides
8.4.5 Enzymes
8.4.6 Biopolymers
8.4.7 Bioenergy Compounds
8.4.8 Anticancer Compounds
8.5 Future Prospects
8.6 Conclusions and Perspectives
Acknowledgments
References
9 Microbial Fuel Cells and Plant Microbial Fuel Cells to Degradation of Polluted Contaminants in Soil and Water
9.1 Introduction
9.2 History
9.3 Electricigens
9.3.1 Electricigens of Bacteria
9.3.2 Electrocigens of Fungi
9.4 Electron Generation and Transfer Mechanisms of Electricigens
9.4.1 Electron Generation Mechanism
9.4.2 Electron Transfer Mechanism
9.4.3 Biofilm Mechanism
9.4.4 Electron Shuttle Mechanism
9.4.5 Electron Transfer by Exogenous Mediators
9.4.6 Microbial Secondary Metabolites for Electron Transfer
9.4.7 Oxidation of Reduced Primary Metabolites
9.5 Materials
9.5.1 Anode Materials
9.5.2 Base Materials of the Anode
9.5.3 The Modification of Anode Materials
9.5.4 Cathode Materials
9.5.5 Carbon‐Based Materials of Cathodes
9.5.6 Non‐Carbon‐Based Materials
9.5.7 Cathode Catalyst
9.5.8 Biocathode
9.5.9 Separator Materials
9.5.9.1 Conventional Separator Materials
9.5.9.2 New Separator Materials
9.6 Design and Operation of Bioelectrochemical Systems. 9.6.1 MFC Configuration. 9.6.1.1 Two‐Compartment MFCs
9.6.1.2 Air Cathode MFC
9.6.1.3 Other Configurations
9.6.2 Soil MFC and PMFC Configurations
9.6.2.1 Dual‐Chamber of Soil MFCs and PMFCs
9.6.2.2 Single‐Chamber MFCs
9.6.2.3 Air‐Diffusion Cathode System
9.6.2.4 Other Configuration of PMFCs
9.7 Performances of the MFCs in Actual Wastewater Treatment. 9.7.1 Industrial Wastewater
9.7.2 Domestic and Livestock Wastewater
9.8 Soil MFCs for Soil Remediation. 9.8.1 Remediation of Organic Contaminated Soils
9.8.2 Remediation of Heavy Metal Contaminated Soils
9.9 PMFCs for Environmental Remediation
9.9.1 PMFCs for Wastewater Treatment
9.9.2 PMFCs for Soil Remediation
9.10 Prospectives
9.11 Conclusions
References
10 Microalgae‐Based UV Protection Compounds
10.1 Introduction
10.2 UV Radiation
10.3 Protection Compounds Induced by UV Radiation
10.3.1 Mycosporine‐Like Amino Acids
10.3.2 Phenolic Compounds
10.3.3 Carotenoids
10.3.4 Phycocyanin
10.3.5 Polyamines
10.3.6 Scytonemin
10.4 Microalgal Biotechnology for the Production of Photoprotective Compounds
10.5 Effects of UV Radiation on the Growth, Morphology, and Production of Lipids, Proteins, and Carbohydrates
10.6 Extraction Methods of Photoprotective Compounds
10.7 Prospects for Commercial Applications
10.8 Conclusion and Perspectives
References
11 Microorganisms as a Potential Source of Antioxidants
11.1 Introduction
11.2 Antioxidant‐Producing Microorganisms
11.3 Production of Some Microbial Antioxidants and Their Action Mechanisms
11.3.1 Peptides
11.3.2 Pigments
11.3.3 Polyphenols
11.4 Extraction and Purification of Microbial Antioxidants. 11.4.1 Extraction of Microbial Antioxidants
11.4.2 Purification of Microbial Antioxidants
11.5 Evaluation of Antioxidant Activity
11.5.1 Classical Methods
11.5.2 Cellular Methods
11.6 Conclusions and Perspectives
References
12 Microbial Production of Biomethane from Digested Waste and Its Significance
12.1 Introduction
12.2 Methane
12.2.1 Source of Methane
12.2.1.1 Industry
12.2.1.2 Agriculture
12.2.1.3 Waste
12.2.2 Biomethane
12.3 Types of Waste
12.3.1 Biological Waste
12.3.2 Household Waste
12.3.3 Agricultural Waste
12.4 Digestion Processes of Organic Wastes
12.4.1 Hydrolysis of Organic Waste
12.4.2 Acidogenesis of Hydrolyzed Matter
12.4.3 Acetogenesis
12.4.3.1 Methanogenesis
12.5 Conclusions and Perspectives
Acknowledgments
Conflicts of Interest
References
13 Enzymatic Biosynthesis of Carbohydrate Biopolymers and Uses Thereof
13.1 Introduction
13.2 Dextran
13.2.1 Mechanism of Dextran Production
13.2.2 Production of Dextran at Industrial Level
13.2.3 Applications of Dextran
13.3 Chitin and Chitosan
13.3.1 Biological Extraction of Chitin
13.3.1.1 Biosynthesis of Chitin and Chitosan
13.3.1.2 Chitin and Chitosan‐Producing Fungi
13.3.1.3 Enzymatic Deproteinization
13.3.1.4 Fermentation
13.3.1.4.1 Lactic Acid Fermentation
13.3.1.4.2 Non–Lactic Acid Fermentation
13.3.1.5 Enzymatic Deacetylation
13.3.2 Applications of Chitin and Chitosan
13.4 Xanthan Gum
13.4.1 Xanthan Gum Production
13.4.2 Microbial Production
13.4.3 Applications of Xanthan Gum
13.5 Bacterial Cellulose
13.5.1 Biosynthetic Pathway for Cellulose Production
13.5.2 Cellulose Precursor
13.5.3 Microbial Source for Cellulose Production
13.5.4 Applications of Cellulose
13.6 Levan
13.6.1 Levan Producing Organism
13.6.2 Mechanism for Levan Biosynthesis
13.6.3 Strategies for Levan Production
13.6.4 Applications of Levan
13.7 Conclusions and Perspectives
Acknowledgments
References
14 Polysaccharides from Marine Microalgal Sources
14.1 Introduction
14.2 Polysaccharides from Marine Microalgae
14.2.1 Subcritical Water Hydrolysis
14.2.2 Ultrasonic‐Aided Extraction
14.2.3 Microwave‐Assisted Extraction
14.2.4 Enzyme‐Assisted Extraction
14.3 Optimization of Microalgae Culture Conditions
14.4 Bioactivities and Potential Health Benefits
14.4.1 Antiviral Activity
14.4.2 Antioxidant
14.4.3 Anticancer
14.4.4 Immunomodulatory
14.5 Conclusions and Perspectives
Acknowledgment
References
15 Microbial Production of Bioplastic Current Status and Future Prospects
15.1 Introduction
15.2 General Structure of PHA
15.3 Physical Properties
15.4 Biodegradability of PHA
15.5 Biosynthesis of PHA
15.6 Challenges of Scaling Up of PHA Production on an Industrial Scale
15.6.1 Renewable Sources as Feedstock for PHA Production. 15.6.1.1 Food Processing and Agricultural Industries Discharge
15.6.1.2 Glycerol
15.6.1.3 Agro‐Industrial Oily Wastes
15.6.2 Cyanobacteria
15.6.3 Bacteria from Extreme Niches
15.6.3.1 Halophilic Bacteria
15.6.3.2 Thermophiles for PHA
15.6.3.3 Psycrophiles for PHA
15.7 Co‐synthesis of PHA with Value‐Added Products
15.8 Blends of PHA
15.9 Applications of PHA
15.9.1 Biomedical Applications
15.9.2 Soft Tissue Implants
15.9.3 Esophagus, Pericardial Patches
15.9.4 Heart Valve Tissue Engineering
15.9.5 Nerve Regeneration
15.9.6 Drug Delivery System
15.10 Conclusions and Perspectives
References
16 Microbial Enzymes for the Mineralization of Xenobiotic Compounds
16.1 Introduction
16.2 Major Pollutants and Their Removal with White‐Rot Fungi
16.2.1 Pesticides
16.2.2 Polychlorinated Biphenyls
16.2.3 Polycyclic Aromatic Hydrocarbons
16.2.4 Synthetic Dyes
16.2.5 Synthetic Polymers
16.2.6 Phenolic Compounds
16.2.7 Petroleum Hydrocarbons
16.3 Enzyme System of White‐Rot Fungi
16.3.1 Laccase
16.3.1.1 Mechanisms
16.3.2 Lignin Peroxidase
16.3.3 Manganese Peroxidase
16.3.3.1 Mechanism
16.3.4 Other Enzymes
16.4 Molecular Aspect
16.5 Conclusions and Perspectives
Acknowledgement
Compliance with Ethical Guidelines
References
17 Functional Oligosaccharides and Microbial Sources
17.1 Introduction
17.1.1 What Are Functional Foods? All You Need to Know
17.2 Inulin and Oligofructose: The Preliminary Functional Oligosaccharides
17.3 GRAS and FOSHU Status
17.4 Conventional and Upcoming Oligosaccharides
17.5 Microbes and Functional Oligosaccharides
17.6 Arabinoxylo‐Oligosaccharides
17.7 Sources and Properties
17.8 Approaches for AXOS Production
17.9 Isomaltooligosaccharides
17.10 Sources and Properties
17.11 Production of IMO
17.12 Approaches to Improve IMO Production
17.13 Lactosucrose
17.14 Novel Approaches in Lactosucrose Preparation
17.15 Xylooligosaccharides
17.16 Occurrence and Properties
17.17 Approaches to Improve the Efficiency of XOS
17.18 Conclusions and Perspectives
References
18 Algal Biomass and Biofuel Production
18.1 Introduction
18.2 Biofuels
18.2.1 First‐Generation Biofuels
18.2.2 Second‐Generation Biofuels
18.2.3 Third‐Generation Biofuels
18.3 Algae: The Biomass
18.4 Microalgae as Biofuel Biomass
18.5 Microalgae Culture Systems
18.5.1 Open Algal Systems
18.5.2 Closed Algal Systems
18.5.3 Hybrid Algal Systems
18.6 Microalgae Harvesting
18.7 Processing and Extraction of Components
18.8 Biofuel Conversion Processes
18.8.1 Transesterification
18.8.2 Biochemical Methods
18.8.2.1 Fermentation
18.8.2.2 Anaerobic Digestion
18.8.3 Thermochemical Conversions
18.8.3.1 Gasification
18.8.3.2 Pyrolysis
18.8.3.3 Liquefaction
18.8.4 Direct Combustion
18.9 Microalgal Biofuels. 18.9.1 Biodiesel
18.9.2 Bioethanol
18.9.3 Biogas
18.9.4 Bio‐Oil and Bio‐Syngas
18.9.5 Biohydrogen
18.10 Conclusions and Perspectives
References
19 Microbial Source of Insect‐Toxic Proteins
19.1 Introduction
19.2 Fungi
19.3 Bacteria
19.4 Virus
19.5 Conclusions and Perspectives
References
20 Recent Trends in Conventional and Nonconventional Bioprocessing
20.1 Advances in Conventional Bioprocessing
20.1.1 The Stirred‐Tank Bioreactor Systems
20.2 Nonconventional Bioprocessing
20.2.1 Wave Bioreactors
20.2.2 Orbital Shaken Bioreactors
20.2.3 Stirred Tank Bioreactors
20.3 Brief Note on the Recent Trends in Downstream Bioprocessing
20.4 Perfusion Culture for Bioprocess Intensification
20.5 Conclusions and Perspectives
References
Index. a
b
c
d
e
f
g
h
i
k
l
m
o
p
q
r
s
t
u
v
w
x
y
z
WILEY END USER LICENSE AGREEMENT
Отрывок из книги
Edited by
.....
Tejas Oza Department of Microbiology, Marwadi University, Rajkot, Gujarat, India
Arun Kumar Pal Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj, Uttar Pradesh, India
.....