Bioprospecting of Microorganism-Based Industrial Molecules

Bioprospecting of Microorganism-Based Industrial Molecules
Автор книги: id книги: 2217396     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 19409,3 руб.     (211,48$) Читать книгу Купить и скачать книгу Электронная книга Жанр: Биология Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119717263 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Discover a comprehensive and current overview of microbial bioprospecting written by leading voices in the field In Bioprospecting of Microorganism-Based Industrial Molecules , distinguished researchers and authors Sudhir P. Singh and Santosh Kumar Upadhyay deliver global perspectives of bioprospecting of biodiversity. The book covers diverse aspects of bioprospecting of microorganisms demonstrating biomass value of nutraceutical, pharmaceutical, biomedical, and bioenergetic importance. The authors present an amalgamation of translational research on bioresource utilization and ecological sustainability that will further the reader’s knowledge of the applications of different microbial diversity and reveal new avenues of research investigation. Readers will also benefit from: A thorough introduction to microbial biodiversity and bioprospecting An exploration of anti-ageing and skin lightening microbial products and microbial production of anti-cancerous biomolecules A treatment of UV protective compounds from algal biodiversity and polysaccharides from marine microalgal sources Discussions of microbial sources of insect toxic proteins and the role of microbes in bio-surfactants production Perfect for academics, scientists, researchers, graduate and post-graduate students working and studying in the areas of microbiology, food biotechnology, industrial microbiology, plant biotechnology, and microbial biotechnology, Bioprospecting of Microorganism-Based Industrial Molecules is an indispensable guide for anyone looking for a comprehensive overview of the subject.

Оглавление

Группа авторов. Bioprospecting of Microorganism-Based Industrial Molecules

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Bioprospecting of Microorganism‐Based Industrial Molecules

About the Editors

List of Contributors

Preface

Acknowledgments

1 An Introduction to Microbial Biodiversity and Bioprospection

1.1 Introduction. 1.1.1 Microorganisms

1.1.2 Bioprospecting

1.1.3 Bioprospection of Microorganisms

1.2 Conclusions and Perspectives

Acknowledgment

References

2 Application of Microorganisms in Biosurfactant Production

2.1 Biosurfactants Nature and Classification

2.2 Biosynthesis of BS by Archaea and Bacteria

2.3 Biosynthesis of BS by Yeasts and Molds

2.4 Screening for BS Producers

2.5 A Case Study: SL by Solid‐State Fermentation (SSF), Kinetics, and Reactor Size Estimation

2.6 Conclusions and Perspectives

References

3 Microbial Gums: Current Trends and Applications

3.1 Introduction

3.2 Biosynthesis of Microbial Gums

3.3 Production of Microbial Gums

3.4 Structure and Properties of Microbial Gums

3.5 Types of Microbial Gums

3.5.1 Xanthan Gum

3.5.2 Sphingans

3.5.2.1 Gellan Gum

3.5.2.2 Welan Gum

3.5.2.3 Rhamsan Gum

3.5.2.4 Diutan Gum

3.5.3 Pullulan

3.5.4 Other Microbial Gums

3.6 Applications of Microbial Gums

3.6.1 Food Applications

3.6.2 Biomedical Applications

3.6.3 Applications in Nanotechnology

3.7 Conclusions and Perspectives

Acknowledgments

References

4 Antiaging and Skin Lightening Microbial Products

4.1 Introduction

4.2 Aging

4.2.1 Structure of Skin

4.2.2 Skin Aging Factors

4.2.3 Intrinsic Skin Aging Factors. 4.2.3.1 Anatomical and Histological Changes

4.2.3.2 Telomere Shortening

4.2.3.3 Metabolic ROS Production

4.2.3.4 Upregulation of Matrix Metalloproteinases

4.2.3.5 Mitochondrial Dysfunction

4.2.3.6 Mutations and Oncogenesis

4.3 Extrinsic Skin Aging Factors

4.3.1 Photoaging

4.3.2 Tobacco Smoking

4.3.3 Air Pollution

4.4 Why Microbes

4.4.1 Bacterial Compounds

4.4.2 Polysaccharides and Oligosaccharides. 4.4.2.1 Hyaluronic Acid

4.4.2.2 Bacterial Cellulose

4.4.2.3 Astaxanthin and Equol

4.4.3 Fungi Compounds. 4.4.3.1 Tyrosinase Inhibition

4.4.3.2 Hyaluronidase Inhibition

4.4.3.3 Collagenase and Elastase Inhibition

4.4.4 Algae Compounds

4.4.4.1 Carbohydrates from Algae

4.4.4.2 Fucoidan

4.4.4.3 Laminaran

4.4.4.4 Ulvans

4.4.4.5 Porphyran

4.4.4.6 Carrageenan

4.4.4.7 Agar

4.4.4.8 Alginic Acids

4.4.5 Pigments from Algae

4.4.5.1 Phycobiliproteins

4.4.5.2 Chlorophylls

4.4.5.3 Carotenoids

4.4.5.4 β‐carotene

4.4.5.5 Canthaxanthins

4.4.5.6 Astaxanthin

4.4.5.7 Fucoxanthin

4.4.5.8 Zeaxanthin

4.4.5.9 Violaxanthin

4.4.6 Secondary Metabolites

4.5 Conclusions and Perspectives

References

5 Application of Microorganisms in Bioremediation

5.1 Introduction

5.2 Microbial Bioremediation

5.3 Microbial Bioremediation of Organic Pollutants

5.3.1 Bioremediation of Alkanes

5.3.2 Bioremediation of Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX)

5.3.3 Bioremediation of Polyaromatic Hydrocarbons

5.3.3.1 Degradation of High‐Molecular‐Weight Polyaromatic Hydrocarbons

5.3.4 Fungal Degradation of Polyaromatic Hydrocarbons

5.3.4.1 Bioremediation of PAHs by Ligninolytic Fungi

5.3.4.2 Catabolism of PAHs by Non‐Ligninolytic Fungi

5.3.5 Bioremediation of Pesticides by Microbes

5.4 Microbial Degradation of Heavy Metals

5.5 Factors Affecting Bioremediation

5.5.1 Abiotic Factors

5.5.2 Biotic Factors

5.6 Advances in Bioremediation

5.7 Conclusions and Perspectives

References

6 Microbial Applications in Organic Acid Production

6.1 Introduction

6.2 Glycolic acid (2C)

6.3 Acetic Acid (2C)

6.4 Pyruvic Acid (3C)

6.5 Lactic Acid (3C)

6.6 Succinic Acid (4C)

6.7 Fumaric Acid (4C)

6.8 Malic Acid (4C)

6.9 Itaconic Acid (5C)

6.10 Gluconic Acid (6C)

6.11 Citric Acid (6C)

6.12 Kojic Acid (6C)

6.13 Muconic and Adipic Acid (C6)

6.14 Conclusions and Perspectives

Acknowledgments

References

7 Production of Bioactive Compounds vs. Recombinant Proteins

7.1 Introduction

7.2 In vitro Cell‐Based Assays

7.3 Cell Viability Assays

7.4 Cell Metabolic Assays

7.5 Cell Survival Assays

7.6 Cell Transformation Assays

7.7 Cell Irritation Assays

7.8 Heterologous Expression of Recombinant Proteins of Biomedical Relevance

7.9 Lactic Acid Bacteria and the Production of Metabolites with Therapeutic Roles

7.10 Preclinical Studies

7.10.1 Acute Toxicity

7.10.2 Repeated Dose Toxicity

7.10.3 Genotoxicity

7.10.4 Carcinogenicity

7.10.5 Reproductive Toxicity

7.11 Computer‐aided Drug Design

7.12 Conclusions and Perspectives

References

8 Microbial Production of Antimicrobial and Anticancerous Biomolecules

8.1 Introduction

8.2 Microbial Sources

8.2.1 Bacteria

8.2.2 Fungi

8.2.3 Actinomycetes

8.2.4 Extremophiles

8.3 Microbial Bioprospecting Methods

8.3.1 Cultural Bioprospecting

8.3.2 Nonculturable Microorganism's Bioprospecting

8.3.3 In Silico Bioprospecting of Microorganisms

8.4 Bioactive Compounds

8.4.1 Antibiotics

8.4.2 Bacteriocins

8.4.3 Biosurfactants

8.4.4 Exopolysaccharides

8.4.5 Enzymes

8.4.6 Biopolymers

8.4.7 Bioenergy Compounds

8.4.8 Anticancer Compounds

8.5 Future Prospects

8.6 Conclusions and Perspectives

Acknowledgments

References

9 Microbial Fuel Cells and Plant Microbial Fuel Cells to Degradation of Polluted Contaminants in Soil and Water

9.1 Introduction

9.2 History

9.3 Electricigens

9.3.1 Electricigens of Bacteria

9.3.2 Electrocigens of Fungi

9.4 Electron Generation and Transfer Mechanisms of Electricigens

9.4.1 Electron Generation Mechanism

9.4.2 Electron Transfer Mechanism

9.4.3 Biofilm Mechanism

9.4.4 Electron Shuttle Mechanism

9.4.5 Electron Transfer by Exogenous Mediators

9.4.6 Microbial Secondary Metabolites for Electron Transfer

9.4.7 Oxidation of Reduced Primary Metabolites

9.5 Materials

9.5.1 Anode Materials

9.5.2 Base Materials of the Anode

9.5.3 The Modification of Anode Materials

9.5.4 Cathode Materials

9.5.5 Carbon‐Based Materials of Cathodes

9.5.6 Non‐Carbon‐Based Materials

9.5.7 Cathode Catalyst

9.5.8 Biocathode

9.5.9 Separator Materials

9.5.9.1 Conventional Separator Materials

9.5.9.2 New Separator Materials

9.6 Design and Operation of Bioelectrochemical Systems. 9.6.1 MFC Configuration. 9.6.1.1 Two‐Compartment MFCs

9.6.1.2 Air Cathode MFC

9.6.1.3 Other Configurations

9.6.2 Soil MFC and PMFC Configurations

9.6.2.1 Dual‐Chamber of Soil MFCs and PMFCs

9.6.2.2 Single‐Chamber MFCs

9.6.2.3 Air‐Diffusion Cathode System

9.6.2.4 Other Configuration of PMFCs

9.7 Performances of the MFCs in Actual Wastewater Treatment. 9.7.1 Industrial Wastewater

9.7.2 Domestic and Livestock Wastewater

9.8 Soil MFCs for Soil Remediation. 9.8.1 Remediation of Organic Contaminated Soils

9.8.2 Remediation of Heavy Metal Contaminated Soils

9.9 PMFCs for Environmental Remediation

9.9.1 PMFCs for Wastewater Treatment

9.9.2 PMFCs for Soil Remediation

9.10 Prospectives

9.11 Conclusions

References

10 Microalgae‐Based UV Protection Compounds

10.1 Introduction

10.2 UV Radiation

10.3 Protection Compounds Induced by UV Radiation

10.3.1 Mycosporine‐Like Amino Acids

10.3.2 Phenolic Compounds

10.3.3 Carotenoids

10.3.4 Phycocyanin

10.3.5 Polyamines

10.3.6 Scytonemin

10.4 Microalgal Biotechnology for the Production of Photoprotective Compounds

10.5 Effects of UV Radiation on the Growth, Morphology, and Production of Lipids, Proteins, and Carbohydrates

10.6 Extraction Methods of Photoprotective Compounds

10.7 Prospects for Commercial Applications

10.8 Conclusion and Perspectives

References

11 Microorganisms as a Potential Source of Antioxidants

11.1 Introduction

11.2 Antioxidant‐Producing Microorganisms

11.3 Production of Some Microbial Antioxidants and Their Action Mechanisms

11.3.1 Peptides

11.3.2 Pigments

11.3.3 Polyphenols

11.4 Extraction and Purification of Microbial Antioxidants. 11.4.1 Extraction of Microbial Antioxidants

11.4.2 Purification of Microbial Antioxidants

11.5 Evaluation of Antioxidant Activity

11.5.1 Classical Methods

11.5.2 Cellular Methods

11.6 Conclusions and Perspectives

References

12 Microbial Production of Biomethane from Digested Waste and Its Significance

12.1 Introduction

12.2 Methane

12.2.1 Source of Methane

12.2.1.1 Industry

12.2.1.2 Agriculture

12.2.1.3 Waste

12.2.2 Biomethane

12.3 Types of Waste

12.3.1 Biological Waste

12.3.2 Household Waste

12.3.3 Agricultural Waste

12.4 Digestion Processes of Organic Wastes

12.4.1 Hydrolysis of Organic Waste

12.4.2 Acidogenesis of Hydrolyzed Matter

12.4.3 Acetogenesis

12.4.3.1 Methanogenesis

12.5 Conclusions and Perspectives

Acknowledgments

Conflicts of Interest

References

13 Enzymatic Biosynthesis of Carbohydrate Biopolymers and Uses Thereof

13.1 Introduction

13.2 Dextran

13.2.1 Mechanism of Dextran Production

13.2.2 Production of Dextran at Industrial Level

13.2.3 Applications of Dextran

13.3 Chitin and Chitosan

13.3.1 Biological Extraction of Chitin

13.3.1.1 Biosynthesis of Chitin and Chitosan

13.3.1.2 Chitin and Chitosan‐Producing Fungi

13.3.1.3 Enzymatic Deproteinization

13.3.1.4 Fermentation

13.3.1.4.1 Lactic Acid Fermentation

13.3.1.4.2 Non–Lactic Acid Fermentation

13.3.1.5 Enzymatic Deacetylation

13.3.2 Applications of Chitin and Chitosan

13.4 Xanthan Gum

13.4.1 Xanthan Gum Production

13.4.2 Microbial Production

13.4.3 Applications of Xanthan Gum

13.5 Bacterial Cellulose

13.5.1 Biosynthetic Pathway for Cellulose Production

13.5.2 Cellulose Precursor

13.5.3 Microbial Source for Cellulose Production

13.5.4 Applications of Cellulose

13.6 Levan

13.6.1 Levan Producing Organism

13.6.2 Mechanism for Levan Biosynthesis

13.6.3 Strategies for Levan Production

13.6.4 Applications of Levan

13.7 Conclusions and Perspectives

Acknowledgments

References

14 Polysaccharides from Marine Microalgal Sources

14.1 Introduction

14.2 Polysaccharides from Marine Microalgae

14.2.1 Subcritical Water Hydrolysis

14.2.2 Ultrasonic‐Aided Extraction

14.2.3 Microwave‐Assisted Extraction

14.2.4 Enzyme‐Assisted Extraction

14.3 Optimization of Microalgae Culture Conditions

14.4 Bioactivities and Potential Health Benefits

14.4.1 Antiviral Activity

14.4.2 Antioxidant

14.4.3 Anticancer

14.4.4 Immunomodulatory

14.5 Conclusions and Perspectives

Acknowledgment

References

15 Microbial Production of Bioplastic Current Status and Future Prospects

15.1 Introduction

15.2 General Structure of PHA

15.3 Physical Properties

15.4 Biodegradability of PHA

15.5 Biosynthesis of PHA

15.6 Challenges of Scaling Up of PHA Production on an Industrial Scale

15.6.1 Renewable Sources as Feedstock for PHA Production. 15.6.1.1 Food Processing and Agricultural Industries Discharge

15.6.1.2 Glycerol

15.6.1.3 Agro‐Industrial Oily Wastes

15.6.2 Cyanobacteria

15.6.3 Bacteria from Extreme Niches

15.6.3.1 Halophilic Bacteria

15.6.3.2 Thermophiles for PHA

15.6.3.3 Psycrophiles for PHA

15.7 Co‐synthesis of PHA with Value‐Added Products

15.8 Blends of PHA

15.9 Applications of PHA

15.9.1 Biomedical Applications

15.9.2 Soft Tissue Implants

15.9.3 Esophagus, Pericardial Patches

15.9.4 Heart Valve Tissue Engineering

15.9.5 Nerve Regeneration

15.9.6 Drug Delivery System

15.10 Conclusions and Perspectives

References

16 Microbial Enzymes for the Mineralization of Xenobiotic Compounds

16.1 Introduction

16.2 Major Pollutants and Their Removal with White‐Rot Fungi

16.2.1 Pesticides

16.2.2 Polychlorinated Biphenyls

16.2.3 Polycyclic Aromatic Hydrocarbons

16.2.4 Synthetic Dyes

16.2.5 Synthetic Polymers

16.2.6 Phenolic Compounds

16.2.7 Petroleum Hydrocarbons

16.3 Enzyme System of White‐Rot Fungi

16.3.1 Laccase

16.3.1.1 Mechanisms

16.3.2 Lignin Peroxidase

16.3.3 Manganese Peroxidase

16.3.3.1 Mechanism

16.3.4 Other Enzymes

16.4 Molecular Aspect

16.5 Conclusions and Perspectives

Acknowledgement

Compliance with Ethical Guidelines

References

17 Functional Oligosaccharides and Microbial Sources

17.1 Introduction

17.1.1 What Are Functional Foods? All You Need to Know

17.2 Inulin and Oligofructose: The Preliminary Functional Oligosaccharides

17.3 GRAS and FOSHU Status

17.4 Conventional and Upcoming Oligosaccharides

17.5 Microbes and Functional Oligosaccharides

17.6 Arabinoxylo‐Oligosaccharides

17.7 Sources and Properties

17.8 Approaches for AXOS Production

17.9 Isomaltooligosaccharides

17.10 Sources and Properties

17.11 Production of IMO

17.12 Approaches to Improve IMO Production

17.13 Lactosucrose

17.14 Novel Approaches in Lactosucrose Preparation

17.15 Xylooligosaccharides

17.16 Occurrence and Properties

17.17 Approaches to Improve the Efficiency of XOS

17.18 Conclusions and Perspectives

References

18 Algal Biomass and Biofuel Production

18.1 Introduction

18.2 Biofuels

18.2.1 First‐Generation Biofuels

18.2.2 Second‐Generation Biofuels

18.2.3 Third‐Generation Biofuels

18.3 Algae: The Biomass

18.4 Microalgae as Biofuel Biomass

18.5 Microalgae Culture Systems

18.5.1 Open Algal Systems

18.5.2 Closed Algal Systems

18.5.3 Hybrid Algal Systems

18.6 Microalgae Harvesting

18.7 Processing and Extraction of Components

18.8 Biofuel Conversion Processes

18.8.1 Transesterification

18.8.2 Biochemical Methods

18.8.2.1 Fermentation

18.8.2.2 Anaerobic Digestion

18.8.3 Thermochemical Conversions

18.8.3.1 Gasification

18.8.3.2 Pyrolysis

18.8.3.3 Liquefaction

18.8.4 Direct Combustion

18.9 Microalgal Biofuels. 18.9.1 Biodiesel

18.9.2 Bioethanol

18.9.3 Biogas

18.9.4 Bio‐Oil and Bio‐Syngas

18.9.5 Biohydrogen

18.10 Conclusions and Perspectives

References

19 Microbial Source of Insect‐Toxic Proteins

19.1 Introduction

19.2 Fungi

19.3 Bacteria

19.4 Virus

19.5 Conclusions and Perspectives

References

20 Recent Trends in Conventional and Nonconventional Bioprocessing

20.1 Advances in Conventional Bioprocessing

20.1.1 The Stirred‐Tank Bioreactor Systems

20.2 Nonconventional Bioprocessing

20.2.1 Wave Bioreactors

20.2.2 Orbital Shaken Bioreactors

20.2.3 Stirred Tank Bioreactors

20.3 Brief Note on the Recent Trends in Downstream Bioprocessing

20.4 Perfusion Culture for Bioprocess Intensification

20.5 Conclusions and Perspectives

References

Index. a

b

c

d

e

f

g

h

i

k

l

m

o

p

q

r

s

t

u

v

w

x

y

z

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Edited by

.....

Tejas Oza Department of Microbiology, Marwadi University, Rajkot, Gujarat, India

Arun Kumar Pal Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj, Uttar Pradesh, India

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Bioprospecting of Microorganism-Based Industrial Molecules
Подняться наверх