Superatoms

Superatoms
Автор книги: id книги: 2217409     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 18001,8 руб.     (197,55$) Читать книгу Купить и скачать книгу Электронная книга Жанр: Химия Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119619567 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Explore the theory and applications of superatomic clusters and cluster assembled materials Superatoms: Principles, Synthesis and Applications  delivers an insightful and exciting exploration of an emerging subfield in cluster science, superatomic clusters and cluster assembled materials. The book presents discussions of the fundamentals of superatom chemistry and their application in catalysis, energy, materials science, and biomedical sciences. Readers will discover the foundational significance of superatoms in science and technology and learn how they can serve as the building blocks of tailored materials, promising to usher in a new era in materials science. The book covers topics as varied as the thermal and thermoelectric properties of cluster-based materials and clusters for CO2 activation and conversion, before concluding with an incisive discussion of trends and directions likely to dominate the subject of superatoms in the coming years. Readers will also benefit from the inclusion of: A thorough introduction to the rational design of superatoms using electron-counting rules Explorations of superhalogens, endohedrally doped superatoms and assemblies, and magnetic superatoms A practical discussion of atomically precise synthesis of chemically modified superatoms A concise treatment of superatoms as the building blocks of 2D materials, as well as superatom-based ferroelectrics and cluster-based materials for energy harvesting and storage Perfect for academic researchers and industrial scientists working in cluster science, energy materials, thermoelectrics, 2D materials, and CO2 conversion,  Superatoms: Principles, Synthesis and Applications  will also earn a place in the libraries of interested professionals in chemistry, physics, materials science, and nanoscience.

Оглавление

Группа авторов. Superatoms

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Superatoms. Principles, Synthesis and Applications

Preface

List of Contributors

1 Introduction

References

2 Rational Design of Superatoms Using Electron‐Counting Rules

2.1 Introduction

2.2 Electron‐Counting Rules. 2.2.1 Jellium Rule

2.2.2 Octet Rule

2.2.2.1 Superalkalis and Superhalogens

2.2.2.2 Superchalcogens

2.2.3 18‐Electron Rule

2.2.4 32‐Electron Rule

2.2.5 Aromaticity Rule

2.2.6 Wade‐Mingos Rule

2.3 Stabilizing Negative Ions Using Multiple Electron‐Counting Rules

2.3.1 Monoanions

2.3.2 Dianions

2.3.3 Trianions

2.3.4 Tetra‐Anions and Beyond

2.4 Conclusions

References

3 Superhalogens – Enormously Strong Electron Acceptors

3.1 Superhalogen Concept. 3.1.1 Early Studies

3.1.2 Further Research (until 1999)

3.1.3 First Measurement of Gas‐Phase Experimental Electron Detachment Energies

3.1.4 The Performance of Theoretical Treatments in Estimating VDEs

3.2 Alternative Superhalogens

3.2.1 Nonmetal Central Atoms

3.2.2 Nonhalogen Ligands

3.2.3 Beyond the MXk + 1 Formula

3.2.4 Superhalogens as Ligands

3.3 Polynuclear Systems and the Search for EA and VDE Limits

3.3.1 Polynuclear Superhalogens

3.3.2 Search for EA and VDE Limits

3.3.3 Magnetic Superhalogens

3.4 Superhalogens' Applications at a Glance

3.5 Final Remarks

Acknowledgements

References

4 Endohedrally Doped Superatoms and Assemblies

4.1 Introduction

4.2 Magic Clusters and Their Electronic Stability

4.3 Discovery of Silicon Fullerenes and Other Polyhedral Forms

4.4 Endohedral Superatoms of Ge, Sn, and Pb

4.5 Magnetic Superatoms

4.6 Endohedral Clusters of Group 11 Elements

4.7 Endohedral Clusters of B, Al, and Ga

4.8 Hydrogenated Silicon Fullerenes

4.9 Compound Superatoms and Other Systems

4.10 Assemblies of Superatoms

4.11 Concluding Remarks

Acknowledgements

References

5 Magnetic Superatoms

5.1 Introduction

5.2 The Arrival of the Magnetic Superatom

5.3 Tunable Superatoms

5.4 The Delocalisation of d‐electrons

5.5 Prospects for Nanostructured Magnetic Material Design

References

6 Atomically Precise Synthesis of Chemically Modified Superatoms

6.1 Introduction. 6.1.1 The Concept of Superatoms

6.1.2 Chemically Modified Au/Ag Superatoms

6.2 Electronic Structures of Chemically Modified Superatoms. 6.2.1 Size Effects

6.2.2 Composition Effects

6.2.3 Shape Effects

6.3 Atomically Precise Synthesis of Chemically Modified Superatoms. 6.3.1 Size Control

6.3.1.1 Top‐down Approach: Size Focusing

6.3.1.2 Bottom‐up Approach: Size Convergence

6.3.1.3 Template Method

6.3.1.4 Kinetic Control

6.3.2 Composition Control. 6.3.2.1 Co‐reduction Method

6.3.2.2 Antigalvanic Method

6.3.2.3 Hydride‐Mediated Transformation

6.3.3 Shape Control

6.3.4 Surface Control

6.3.4.1 Ligand Exchange

6.3.4.2 Hydrogen‐Mediated Transformation

6.4 Summary

References

7 Atomically Precise Noble Metals in the Nanoscale, Stabilized by Ligands

7.1 Introduction

7.2 Fundamentals. 7.2.1 Free Electron Model and the Kubo Gap

7.2.2 Electron Shell Structure

7.2.3 Ligand‐Stabilized Metal Clusters as Superatoms

7.2.3.1 Case Study: The (Ag44(SR)30)4− Superatom

7.2.4 Transition from Electronic to Atomic Shells

7.3 Applications. 7.3.1 Catalysis

7.3.2 Biological and Medical Applications

7.3.2.1 Case Study: Imaging of Enteroviruses

7.3.3 Self‐Assembling Cluster Materials from Superatoms

7.3.3.1 Case Study: Polymeric 1D Cluster Materials

7.4 Summary and Outlook

References

8 Superatoms as Building Blocks of 2D Materials

8.1 Introduction

8.2 Fullerene‐assembled 2D Materials. 8.2.1 C60‐assembled Monolayer

8.2.1.1 Freestanding vdW C60 Monolayer

8.2.1.2 Freestanding Covalent Polymerized C60 Monolayer

8.2.2 Cn (n = 20, 26, 32, 36)‐assembled Monolayers

8.2.3 Fullerene Monolayers on Substrates

8.3 Si‐based Cluster Assembled 2D Materials

8.3.1 V@Si12 Assembled 2D Monolayer

8.3.1.1 Structure and Stability

8.3.1.2 Electronic and Ferromagnetic Properties

8.3.2 Other TM@Si12 Assembled 2D Monolayers

8.3.3 Ta@Si16 Assembled 2D Monolayer and That on Substrate

8.4 Binary Semiconductor Cluster Assembled 2D Materials

8.4.1 Cd6Se6 Assembled Sheets

8.4.2 X12Y12 Cage Cluster Assembled Monolayer

8.5 Simple and Noble Metal Cluster‐assembled 2D Materials

8.5.1 Mg7 Assembled Monolayer

8.5.2 Au9 and Pt9 Assembled Square Monolayer

8.6 Zintl‐ion Cluster‐assembled 2D Materials

8.6.1 Ge9 Ion Cluster Monolayer

8.6.2 Ti@Au12 Ion Cluster Monolayer

8.7 Chevrel Cluster‐Assembled 2D Materials

8.7.1 Re6Se8 Cluster‐based Monolayer

8.7.2 Co6Se8 Cluster‐based Monolayer

8.8 Summary and Future Perspectives

References

9 Superatom‐Based Ferroelectrics

9.1 Introduction

9.2 Organic Ferroelectrics

9.3 Hybrid Organic‐Inorganic Perovskites

9.4 Supersalts

9.5 Conclusion

References

10 Cluster‐based Materials for Energy Harvesting and Storage

10.1 Introduction

10.2 Cluster‐based Materials for Moisture‐resistant Hybrid Perovskite Solar Cells

10.3 Cluster‐based Materials for Optoelectronic Devices

10.4 Cluster‐based Materials for Solid‐state Electrolytes in Li‐ and Na‐ion Batteries

10.4.1 Halogen‐free Electrolytes

10.4.2 Cluster‐based Antiperovskites for Electrolytes in Li‐ion Batteries

10.4.3 Cluster‐based Antiperovskites for Electrolytes in Na‐ion Batteries

10.5 Cluster‐based Materials for Hydrogen Storage

10.5.1 Hydrogen Interaction Mechanism

10.5.2 Intermediate States

10.5.3 Catalysts for Lowering the Dehydrogenation Temperature

10.6 Clusters Promoting Unusual Reactions

10.6.1 Zn in +III Oxidation State

10.6.2 Covalent Binding of Noble Gas Atoms

10.7 Conclusions

References

11 Thermal and Thermoelectric Properties of Cluster‐based Materials

11.1 Introduction

11.2 Basic Theory. 11.2.1 Thermoelectric Effect

11.2.2 Material Performance

11.2.3 Tuning ZT by Carrier Concentration

11.2.4 Tuning ZT by Electronic Structure

11.2.4.1 Carrier Effective Mass, m*

11.2.4.2 Carrier Mobility

11.3 Low Lattice Thermal Conductivity of Cluster‐based Materials

11.3.1 Crystal Complexity of Cluster‐based Materials

11.3.2 Chemical Bond Hierarchy in Cluster‐based Materials

11.3.3 Structural Disorder in Cluster‐based Materials

11.3.4 Orientational Disorder in Cluster‐based Materials

11.3.4.1 Co6E8(PEt3)6 and [Co6E8(PEt3)6][C60]2

11.3.4.2 Fullerene Assembled Films

11.4 Thermoelectric Properties of some Selected Cluster‐based Materials. 11.4.1 Mo6 and Mo9 Cluster‐based Selenides

11.4.1.1 Crystal Structures

11.4.1.2 Electronic Structures

11.4.1.3 Thermal Properties

11.4.1.4 Thermoelectric Figure of Merit ZT

11.4.2 Boron‐based Cluster Materials

11.4.2.1 Crystal Structures

11.4.2.2 Thermoelectric Properties

11.4.3 Silver‐based Cluster Materials

11.5 Conclusion

References

12 Clusters for CO2 Activation and Conversion

12.1 Introduction

12.2 Superalkali Catalysts

12.2.1 Li‐based Superalkalis for CO2 Activation

12.2.2 Supported or Embedded Superalkalis for CO2 Capture

12.3 Al‐based Clusters for CO2 Capture

12.4 Ligand‐protected Au25 Clusters for CO2 Conversion

12.5 M@Ag24 Clusters for CO2 Conversion

12.6 Cu‐based Clusters for CO2 Conversion

12.7 Metal Encapsulated Silicon Nanocages for CO2 Conversion

12.8 Summary and Perspectives

References

13 Conclusions and Future Outlook

Index. a

b

c

d

e

f

g

h

j

k

l

m

n

o

p

r

s

t

v

w

z

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Edited by

Purusottam (Puru) Jena

.....

Beijing, China

Haoming Shen School of Materials Science and Engineering, Peking University, Beijing, China Center for Applied Physics and Technology, Peking University, Beijing, China

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Superatoms
Подняться наверх