Algebra and Applications 2
Реклама. ООО «ЛитРес», ИНН: 7719571260.
Оглавление
Группа авторов. Algebra and Applications 2
Table of Contents
List of Illustrations
Tables
Guide
Pages
Algebra and Applications 2. Combinatorial Algebra and Hopf Algebras
Preface
1. Algebraic Background for Numerical Methods, Control Theory and Renormalization
1.1. Introduction
1.2. Hopf algebras: general properties
1.2.1. Algebras
1.2.2. Coalgebras
1.2.3. Convolution product
1.2.4. Bialgebras and Hopf algebras
1.2.5. Some simple examples of Hopf algebras. 1.2.5.1. The Hopf algebra of a group
1.2.5.2. Tensor algebras
1.2.5.3. Enveloping algebras
1.2.6. Some basic properties of Hopf algebras
1.3. Connected Hopf algebras
1.3.1. Connected graded bialgebras
1.3.2. An example: the Hopf algebra of decorated rooted trees
1.3.3. Connected filtered bialgebras
1.3.4. The convolution product
1.3.5. Characters
1.3.6. Group schemes and the Cartier-Milnor-Moore-Quillen theorem
1.3.7. Renormalization in connected filtered Hopf algebras
1.4. Pre-Lie algebras
1.4.1. Definition and general properties
1.4.2. The group of formal flows
1.4.3. The pre-Lie Poincaré–Birkhoff–Witt theorem
1.5. Algebraic operads
1.5.1. Manipulating algebraic operations
1.5.2. The operad of multi-linear operations
1.5.3. A definition for linear operads
1.5.4. A few examples of operads. 1.5.4.1. The operad ASSOC
1.5.4.2. The operad COM
1.5.4.3. Associative algebras
1.6. Pre-Lie algebras (continued) 1.6.1. Pre-Lie algebras and augmented operads. 1.6.1.1. General construction
1.6.1.2. The pre-Lie operad
1.6.2. A pedestrian approach to free pre-Lie algebra
1.6.3. Right-sided commutative Hopf algebras and the Loday-Ronco theorem
1.6.4. Pre-Lie algebras of vector fields. 1.6.4.1. Flat torsion-free connections
1.6.4.2. Relating two pre-Lie structures
1.6.5. B-series, composition and substitution
1.7. Other related algebraic structures. 1.7.1. NAP algebras
1.7.1.1. Definition and general properties
1.7.1.2. Free NAP algebras
1.7.1.3. NAP algebras of vector fields
1.7.2. Novikov algebras
1.7.3. Assosymmetric algebras
1.7.4. Dendriform algebras
1.7.5. Post-Lie algebras
1.8. References
2. From Iterated Integrals and Chronological Calculus to Hopf and Rota-Baxter Algebras
2.1. Introduction
2.2. Generalized iterated integrals
2.2.1. Permutations and simplices
2.2.2. Descents, NCSF and the BCH formula
2.2.3. Rooted trees and nonlinear differential equations
2.2.4. Flows and Hopf algebraic structures
2.3. Advances in chronological calculus
2.3.1. Chronological calculus and half-shuffles
2.3.2. Chronological calculus and pre-Lie products
2.3.3. Time-ordered products and enveloping algebras
2.3.4. Formal flows and Hopf algebraic structures
2.4. Rota–Baxter algebras
2.4.1. Origin
2.4.2. Definition and examples
2.4.3. Related algebraic structures
2.4.4. Atkinson’s factorization and Bogoliubov’s recursion
2.4.5. Spitzer’s identity: commutative case
2.4.6. Free commutative Rota–Baxter algebras
2.4.7. Spitzer’s identity: noncommutative case
2.4.8. Free Rota–Baxter algebras
2.5. References
3. Noncommutative Symmetric Functions, Lie Series and Descent Algebras
3.1. Introduction
3.2. Classical symmetric functions. 3.2.1. Symmetric polynomials
3.2.2. The Hopf algebra of symmetric functions
3.2.3. The λ-ring notation
3.2.4. Symmetric functions and formal power series
3.2.5. Duality
3.3. Noncommutative symmetric functions. 3.3.1. Basic definitions
3.3.2. Generators and linear bases
3.3.3. Duality
3.3.4. Solomon’s descent algebras
3.4. Lie series and Lie idempotents. 3.4.1. Permutational operators on tensor spaces
3.4.2. The Hausdorff series
3.4.3. Lie idempotents in the descent algebra
3.5. Lie idempotents as noncommutative symmetric functions. 3.5.1. Noncommutative power-sums
3.5.2. The Magnus expansion
3.5.3. The continuous BCH expansion
3.5.4. Another proof of the Magnus expansion
3.5.5. The (1 – q) -transform
3.5.6. Hopf algebras enter the scene
3.5.7. A one-parameter family of Lie idempotents
3.5.8. The iterated q-bracketing and its diagonalization
3.6. Decompositions of the descent algebras. 3.6.1. Complete families of minimal orthogonal idempotents
3.6.2. Eulerian idempotents
3.6.3. Generalized Eulerian idempotents
3.7. Decompositions of the tensor algebra
3.8. General deformations
3.9. Lie quasi-idempotents as Lie polynomials
3.9.1. The left derivative
3.9.2. Multilinear Lie polynomials
3.9.3. Decompositions on other bases
3.10. Permutations and free quasi-symmetric functions. 3.10.1. Free quasi-symmetric functions
3.11. Packed words and word quasi-symmetric functions
3.12. References
4. From Runge–Kutta Methods to Hopf Algebras of Rooted Trees
4.1. Numerical integration methods for ordinary differential equations. 4.1.1. Introduction
4.1.2. Runge–Kutta methods
4.2. Algebraic theory of Runge–Kutta methods. 4.2.1. The order conditions of RK methods
4.2.2. The independence of order conditions
4.2.3. Proof of necessary and sufficient order conditions
4.2.4. Composition of RK methods, rooted trees and forests
4.2.5. The Butcher group
4.2.6. Equivalence classes of RK methods
4.2.7. Bibliographical comments
4.3. B-series and related formal expansions
4.3.1. B-series
4.3.2. Backward error analysis, the exponential and the logarithm
4.3.3. Series of linear differential operators
4.3.4. The Lie algebra of the Butcher group
4.3.5. The pre-Lie algebra structure on
4.3.6. Bibliographical comments
4.4. Hopf algebras of rooted trees
4.4.1. The commutative Hopf algebra of rooted trees
4.4.2. The dual algebra ℋ* and the dual Hopf algebra ℋ°
4.4.3. B-series and series of differential operators revisited
4.4.4. A universal property of the commutative Hopf algebra of rooted trees
4.4.5. The substitution law
4.4.6. Bibliographical comments
4.5. References
5. Combinatorial Algebra in Controllability and Optimal Control
5.1. Introduction
5.1.1. Motivation: idealized examples
5.1.2. Controlled dynamical systems
5.1.3. Fundamental questions in control
5.2. Analytic foundations
5.2.1. State-space models and vector fields on manifolds
5.2.2. Chronological calculus
5.2.3. Piecewise constant controls and the Baker–Campbell–Hausdorff formula
5.2.4. Picard iteration and formal series solutions
5.2.5. The Chen–Fliess series and abstractions
5.3. Controllability and optimality
5.3.1. Reachable sets and accessibility
5.3.2. Small-time local controllability
5.3.3. Nilpotent approximating systems
5.3.4. Optimality and the maximum principle
5.3.5. Control variations and approximating cones
5.4. Product expansions and realizations
5.4.1. Variation of parameters and exponential products
5.4.2. Computations using Zinbiel products
5.4.3. Exponential products and normal forms for nilpotent systems
5.4.4. Logarithm of the Chen series
5.5. References
6. Algebra is Geometry is Algebra – Interactions Between Hopf Algebras, Infinite Dimensional Geometry and Application
6.1. The Butcher group and the Connes–Kreimer algebra
6.1.1. The Butcher group and B-series from numerical analysis
6.1.2. Beyond the Butcher group
6.2. Character groups of graded and connected Hopf algebras
6.2.1. The exponential and logarithm
6.3. Controlled groups of characters
6.3.1. Conventions for this section
6.3.2. Combinatorial Hopf algebras and the inverse factorial character
6.4. Appendix: Calculus in locally convex spaces
6.4.1.Cr -Manifolds and Cr -mappings between them
6.5. References
List of Authors
Index
A
B
C
D, E
F, G
H, I
L
M, N
O
P
Q, R
S
T, W, Z
WILEY END USER LICENSE AGREEMENT
Отрывок из книги
Mathematics, Field Director – Nikolaos Limnios
Algebra and Geometry, Subject Head – Abdenacer Makhlouf
.....
According to equation [1.48], we can identify the pro-unipotent group {e*a, a ∈ A} ⊂ and the group of formal flows of the pre-Lie algebra A by means of the projection p, namely:
for any a, b ∈ A.
.....