Electromagnetic Vortices

Electromagnetic Vortices
Автор книги: id книги: 2221697     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 14492,8 руб.     (134,52$) Читать книгу Купить и скачать книгу Электронная книга Жанр: Физика Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119662877 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Discover the most recent advances in electromagnetic vortices  In  Electromagnetic Vortices: Wave Phenomena and Engineering Applications , a team of distinguished researchers delivers a cutting-edge treatment of the research and development of electromagnetic vortex waves, including their related wave properties and several potentially transformative applications.  The book is divided into three parts. The editors first include resources that describe the generation, sorting, and manipulation of vortex waves, as well as descriptions of interesting wave behavior in the infrared and optical regimes with custom-designed nanostructures. They then discuss the generation, multiplexing, and propagation of vortex waves at the microwave and millimeter-wave frequencies. Finally, the selected contributions discuss several representative practical applications of vortex waves from a system perspective.  With coverage that incorporates demonstration examples from a wide range of related sub-areas, this essential edited volume also offers:  Thorough introductions to the generation of optical vortex beams and transformation optical vortex wave synthesizers Comprehensive explorations of millimeter-wave metasurfaces for high-capacity and broadband generation of vector vortex beams, as well as OAM detection and its observation in second harmonic generations Practical discussions of microwave SPP circuits and coding metasurfaces for vortex beam generation and orbital angular momentum-based structured radio beams and their applications In-depth examinations of OAM multiplexing using microwave circuits for near-field communications and wireless power transmission Perfect for students of wireless communications, antenna/RF design, optical communications, and nanophotonics,  Electromagnetic Vortices: Wave Phenomena and Engineering Applications  is also an indispensable resource for researchers at large defense contractors and government labs.

Оглавление

Группа авторов. Electromagnetic Vortices

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Electromagnetic Vortices: Wave Phenomena and Engineering Applications

About the Editors

List of Contributors

Preface

1 Fundamentals of Orbital Angular Momentum Beams: Concepts, Antenna Analogies, and Applications

1.1 Electromagnetic Fields Carry Orbital Angular Momentum

1.2 OAM Beams; Properties and Analogies with Conventional Beams

1.2.1 Laguerre–Gaussian Modes

1.3 Communicating Using OAM: Potentials and Challenges

1.3.1 OAM Communication Link Scenarios and Technical Barriers

1.3.2 OAM Emerging Applications and Perspectives. 1.3.2.1 Free‐space Communications

1.3.2.2 Optical Fiber Communications

1.4 OAM Generation Methods

1.5 Summary and Perspectives

Appendix 1.A OAM Far-field Calculation

References

2 OAM Radio – Physical Foundations and Applications of Electromagnetic Orbital Angular Momentum in Radio Science and Technology

2.1 Introduction

2.2 Physics

2.2.1 The Classical Electromagnetic Field

2.2.2 Electrodynamic Observables

2.2.2.1 Behavior at Very Long Distances

2.3 Implementation

2.3.1 Wireless Information Transfer with Linear Momentum

2.3.2 Wireless Information Transfer with Angular Momentum

2.3.2.1 Spin Angular Momentum vs. Orbital Angular Momentum

2.3.2.2 Angular Momentum Transducers

2.3.2.3 Electric Hertzian Dipoles

2.3.3 Astronomy Applications

Appendix A. 2.A.1 Theory

2.A.1.1 Classical Majorana‐Oppenheimer Formalism and Its Affinity to First Quantization Formalism

2.A.1.1.1 Riemann–Silberstein Electromagnetic Potentials and Fields

A.1.1.1 Purely Electric Sources

A.1.1.2 Useful Approximations

A.1.2.1 The Paraxial Approximation

A.1.2.2 The Far‐Zone Approximation

2.A.2 Poincaré Invariants and Conserved Quantities of the EM Field

A.2.1 Energy

A.2.2 Linear Momentum

A.2.2.1 Gauge Invariance

A.2.2.2 First Quantization Formalism

A.2.3 Angular Momentum

A.2.3.1 Gauge Invariance

A.2.3.2 First Quantization Formalism

References

Notes

3 Generation of Microwave Vortex Beams Using Metasurfaces

3.1 Introduction

3.2 Metasurfaces for Vortex‐beam Generation

3.2.1 Reflective Metasurfaces for Vortex‐beam Generation

3.2.2 Transmission Metasurfaces for Vortex‐beam Generation

3.2.3 Planar Metasurfaces for Vortex‐beam Generation

3.2.4 Metasurfaces for Modified Vortex‐beam Generation

3.2.5 One‐dimensional Metasurface for Vortex‐beam Generation

3.3 Conclusion

Acknowledgments

References

4 Application of Transformation Optics and 3D Printing Technology in Vortex Wave Generation

4.1 Introduction

4.2 Theoretical Basis of Transformation Optics and 3D Printing. 4.2.1 The Concept and Development of Transformation Optics

4.2.2 An Overview of 3D Printing Techniques

4.3 Several Applications of Transformation Optics in Vortex Waves. 4.3.1 All‐Dielectric Transformed Material for the Generation of OAM Beams

4.3.2 All‐dielectric Metamaterial Medium for Collimating OAM Vortex Waves

4.3.3 A Transformation Optics‐Based Lens for Horizontal Radiation of OAM Vortex Waves

4.4 Conclusions

References

5 Millimeter‐Wave Transmit‐Arrays for High‐Capacity and Wideband Generation of Scalar and Vector Vortex Beams

5.1 Introduction

5.2 Vector Vortex Beams and Hybrid‐Order PSs

5.3 Millimeter‐Wave Transmit‐Array Unit Cell Designs

5.3.1 Ka‐Band CP Unit Cell Design

5.3.2 Q‐Band CP Unit Cell Design

5.3.3 K‐Band Dual‐CP Unit Cell Design

5.4 Millimeter‐Wave Transmit‐Arrays for Vortex Beam Multiplexing

5.4.1 Far‐Field Pattern Calculation for Transmit‐Arrays

5.4.2 Multiplexing of Scalar Vortex Beams

5.4.3 Multiplexing of Vector Vortex Beams with Symmetry Constraints

5.4.4 Multiplexing of Vector Vortex Beams with Broken Symmetry

5.5 Conclusion

Acknowledgment

References

6 Twisting Light with Metamaterials

6.1 Introduction

6.2 OAM Beams on the Nanoscale

6.3 Active OAM Sources

6.4 OAM Light in Engineered Nonlinear Colloidal Systems

6.5 Conclusion

References

7 Generation of Optical Vortex Beams

7.1 Introduction

7.2 Basic Theory of Optical Vortex

7.3 Generation of Optical Vortex. 7.3.1 Generation of Vortex Beams using Optical Elements

7.3.1.1 Spiral Phase Plate

7.3.1.2 Fork‐grating Hologram

7.3.1.3 Spiral Zone Plate Holograms

7.3.2 Generation of Vortex Beams Using Digital Devices

7.3.3 Generation of Vortex Beams Based on Mode Conversion

7.3.4 Generation of Vortex Beams Based on the Superposition of Waves

7.3.5 Generation of Vortex Beams Based on Metasurfaces

7.4 Generation of Novel Vortex Beams

7.4.1 Perfect Vortex Beam

7.4.2 Fractional Vortex Beams

7.4.3 Anomalous Vortex Beam

7.4.4 Vortex Beams with Varying OAM

7.5 Conclusion

References

8 Orbital Angular Momentum Generation, Detection, and Angular Momentum Conservation with Second Harmonic Generation

8.1 Orbital Angular Momentum Generation and Detection

8.1.1 OAM Generation

8.1.1.1 Complementary Metasurfaces

8.1.1.2 Quasi‐Continuous Metasurfaces

8.1.1.3 Photonic Crystals

8.1.2 OAM Detection

8.1.2.1 Modified Dynamic Mode Decomposition

8.1.2.2 Holographic Metasurfaces

8.2 AM Conservation: Nonlinear Optics

8.2.1 BEM for Nonlinear Optics

8.2.2 Verification of the Algorithm

8.2.3 Mixing of Spin and OAM

8.2.4 General Angular Momenta Conservation Law

8.3 Conclusion

References

9 Orbital Angular Momentum Based Structured Radio Beams and its Applications1

9.1 Introduction

9.2 PS–OAM Based Structured Beams. 9.2.1 Plane Spiral OAM

9.2.2 Structured Radio Beam

9.3 Antennas for Structured Beams. 9.3.1 Antennas for PS–OAM Waves

9.3.2 SIW‐based Compact Antenna

9.3.3 Partial Arc Transmitting Scheme

9.4 Potential Applications. 9.4.1 Radar Detection

9.4.2 MIMO System

9.4.3 Spatial Field Digital Modulation

9.5 Conclusion

References

Note

10 OAM Multiplexing Using Uniform Circular Array and Microwave Circuit for Short‐range Communication

10.1 Introduction

10.2 OAM Multiplexing System and its Mechanism

10.2.1 Coaxial UCA Configuration

10.2.2 Circulant Channel Matrix

10.2.3 DFT/IDFT Beamformers

10.3 OAM Multiplexing for Short‐range Communications

10.3.1 Achievable Rate

10.3.2 Array Topology

10.3.3 Optimal Array Radius

10.3.4 Butler Matrix

10.3.5 Performance Evaluation

10.4 Conclusion and Key Challenges

References

11 OAM Communications in Multipath Environments

11.1 Introduction

11.1.1 Fading in Wireless Propagation

11.1.1.1 Pass Loss

11.1.1.2 Large‐Scale Fading

11.1.1.3 Small‐Scale Fading

11.1.2 Diversity and Multiplexing

11.1.3 MIMO Systems

11.2 OAM Communication in Line‐of‐sight Environment

11.2.1 Conventional OAM Multiplexing

11.2.2 OAM Multiplexing with Spatial Equalization

11.3 OAM Multiplexing in Multipath Environment

11.3.1 Specular Reflection

11.3.1.1 Intra‐channel Interference

11.3.1.2 Inter‐channel Interference

11.3.2 Indoor Environment

11.3.2.1 Inter‐Symbol Interference (ISI)

11.3.2.2 Antenna misalignment

11.3.3 Highly Reverberant Environments

11.4 Conclusion

References

12 High‐capacity Free‐space Optical Communications Using Multiplexing of Multiple OAM Beams

12.1 Introduction

12.2 Challenges for an OAM Multiplexing Free‐space Optical Communication System

12.2.1 Beam divergence

12.2.2 Misalignment

12.2.3 Atmospheric Turbulence Effects

12.2.4 Obstruction

12.2.5 Summary

12.3 Free‐space Optical OAM Links

12.3.1 High‐capacity OAM Multiplexed Communication Link Under Laboratory Conditions

12.3.2 OAM‐based FSO Link Beyond Laboratory Distances

12.3.3 Summary

12.4 Inter‐channel Crosstalk Mitigation Methods in OAM‐multiplexed FSO Communications

12.4.1 Adaptive Optics for Crosstalk Mitigation

12.4.1.1 AO Using a Wavefront Sensor (WFS) and a Gaussian Probe Beam

12.4.1.2 AO Using WFS and Gaussian Probe Beam in a Quantum Communication Link

12.4.1.3 AO Using a Camera for Beam Intensity Measurement

12.4.2 Spatial Modes Manipulation for Crosstalk Mitigation

12.4.2.1 Turbulence Precompensation by OAM Mode Combination

12.4.2.2 Simultaneous Orthogonalizing and Shaping of Multiple LG Beams

12.4.3 Digital Signal Processing for Crosstalk Mitigation

12.4.3.1 MIMO Equalization for Crosstalk Mitigation in Laboratory

12.4.3.2 Turbulence‐Resilient Beam Mixing for Crosstalk Mitigation

12.4.4 Summary

12.5 OAM Multiplexing for Unmanned Aerial Vehicle (UAV) Platforms

12.5.1 OAM System Design and Demonstrations for UAV Platforms

12.5.2 Multiple‐Input‐Multiple‐Output (MIMO) Mitigation for Atmospheric Turbulence in UAV Platforms

12.5.3 Summary

12.6 OAM Multiplexing in Underwater Environments

12.6.1 Underwater Effects for OAM Beam Propagation

12.6.2 OAM Multiplexing Demonstrations in Underwater Environments

12.6.3 Multiple‐Input‐Multiple‐Output (MIMO) Mitigation for Inter‐Channel Crosstalk in Underwater Environments

12.6.4 Summary

12.7 Summary of this Chapter

Acknowledgment

References

13 Theory of Vector Beams for Chirality and Magnetism Detection of Subwavelength Particles

13.1 Characterization of Azimuthally and Radially Polarized Beams

13.2 Circular Dichroism for a Particle of Subwavelength Size

13.2.1 Helicity of an Azimuthally Radially Polarized Vector Beam

13.3 Photoinduced Force Microscopy at Nanoscale

13.3.1 Magnetic Photoinduced Force Microscopy by Using an APB

13.3.2 Chirality Photoinduced Force Microscopy

13.4 Conclusion

References

14 Quantum Applications of Structured Photons

14.1 Introduction

14.2 Photonic Degrees of Freedom

14.3 Single Photon Source: SPDC

14.4 Generation and Detection of Structured Photon Quantum States

14.4.1 Generation of Structured Photon States

14.4.2 Detection of Structured Photons

14.5 Quantum Key Distribution

14.5.1 BB84 Protocol

14.5.2 Alignment‐free QKD

14.5.3 High‐dimensional QKD

14.6 Quantum Simulation with Quantum Walks

14.6.1 Quantum Walks in the OAM Space

14.6.2 Shaping the Walker Space: Cyclic Walks and Walks on 2D Lattices

14.6.3 Applications: Wavepacket Dynamics and Detection of Topological Phases

14.7 Outlook

References

Index

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

y

z

IEEE PRESS SERIES ON ELECTROMAGNETIC WAVE THEORY

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

IEEE Press

445 Hoes Lane

.....

Los Angeles, CA, USA

Wei E. I. Sha

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Electromagnetic Vortices
Подняться наверх