The Internet of Medical Things (IoMT)

The Internet of Medical Things (IoMT)
Автор книги: id книги: 2268300     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 29742,4 руб.     (289,95$) Читать книгу Купить и скачать книгу Электронная книга Жанр: Программы Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119769187 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

INTERNET OF MEDICAL THINGS (IOMT) Providing an essential addition to the reference material available in the field of IoMT, this timely publication covers a range of applied research on healthcare, biomedical data mining, and the security and privacy of health records. With their ability to collect, analyze and transmit health data, IoMT tools are rapidly changing healthcare delivery. For patients and clinicians, these applications are playing a central part in tracking and preventing chronic illnesses – and they are poised to evolve the future of care. In this book, the authors explore the potential applications of a wave of sensor-based tools—including wearables and stand-alone devices for remote patient monitoring—and the marriage of internet-connected medical devices with patient information that ultimately sets the IoMT ecosystem apart. This book demonstrates the connectivity between medical devices and sensors is streamlining clinical workflow management and leading to an overall improvement in patient care, both inside care facilities and in remote locations.

Оглавление

Группа авторов. The Internet of Medical Things (IoMT)

Table of Contents

List of Illustrations

List of Tables

Guide

Pages

The Internet of Medical Things (IoMT) Healthcare Transformation

Preface

1. In Silico Molecular Modeling and Docking Analysis in Lung Cancer Cell Proteins

1.1 Introduction

1.2 Methodology. 1.2.1 Sequence of Protein

1.2.2 Homology Modeling

1.2.3 Physiochemical Characterization

1.2.4 Determination of Secondary Models

1.2.5 Determination of Stability of Protein Structures

1.2.6 Identification of Active Site

1.2.7 Preparation of Ligand Model

1.2.8 Docking of Target Protein and Phytocompound

1.3 Results and Discussion. 1.3.1 Determination of Physiochemical Characters

1.3.2 Prediction of Secondary Structures

1.3.3 Verification of Stability of Protein Structures

1.3.4 Identification of Active Sites

1.3.5 Target Protein-Ligand Docking

1.4 Conclusion

References

2. Medical Data Classification in Cloud Computing Using Soft Computing With Voting Classifier: A Review

2.1 Introduction

2.1.1 Security in Medical Big Data Analytics

2.1.1.1 Capture

2.1.1.2 Cleaning

2.1.1.3 Storage

2.1.1.4 Security

2.1.1.5 Stewardship

2.2 Access Control–Based Security

2.2.1 Authentication

2.2.1.1 User Password Authentication

2.2.1.2 Windows-Based User Authentication

2.2.1.3 Directory-Based Authentication

2.2.1.4 Certificate-Based Authentication

2.2.1.5 Smart Card–Based Authentication

2.2.1.6 Biometrics

2.2.1.7 Grid-Based Authentication

2.2.1.8 Knowledge-Based Authentication

2.2.1.9 Machine Authentication

2.2.1.10 One-Time Password (OTP)

2.2.1.11 Authority

2.2.1.12 Global Authorization

2.3 System Model

2.3.1 Role and Purpose of Design

2.3.1.1 Patients

2.3.1.2 Cloud Server

2.3.1.3 Doctor

2.4 Data Classification

2.4.1 Access Control

2.4.2 Content

2.4.3 Storage

2.4.4 Soft Computing Techniques for Data Classification

2.5 Related Work

2.6 Conclusion

References

3. Research Challenges in Pre-Copy Virtual Machine Migration in Cloud Environment

3.1 Introduction

3.1.1 Cloud Computing

3.1.1.1 Cloud Service Provider

3.1.1.2 Data Storage and Security

3.1.2 Virtualization

3.1.2.1 Virtualization Terminology. 3.1.2.1.1 Virtual Machines

3.1.2.1.2 Virtual Server

3.1.2.1.3 Virtual Network Interface Card

3.1.2.1.4 Virtual SCSI Adapter

3.1.2.1.5 Virtual CPU

3.1.2.1.6 Virtual Disk

3.1.2.1.7 Virtual Machine Monitor

3.1.3 Approach to Virtualization

3.1.4 Processor Issues

3.1.5 Memory Management

3.1.6 Benefits of Virtualization

3.1.7 Virtual Machine Migration

3.1.7.1 Pre-Copy

3.1.7.2 Post-Copy

3.1.7.3 Stop and Copy

3.1.7.3.1 Total Page Transfer

3.1.7.3.2 Downtime

3.1.7.3.3 Total Migration Time

3.1.7.3.4 Overhead

3.2 Existing Technology and Its Review

3.3 Research Design

3.3.1 Basic Overview of VM Pre-Copy Live Migration

3.3.2 Improved Pre-Copy Approach

3.3.3 Time Series–Based Pre-Copy Approach

Algorithm of Time Series–Based Pre-Copy

3.3.4 Memory-Bound Pre-Copy Live Migration

3.3.5 Three-Phase Optimization Method (TPO)

3.3.6 Multiphase Pre-Copy Strategy

3.4 Results

3.4.1 Finding

3.5 Discussion. 3.5.1 Limitation

3.5.2 Future Scope

3.6 Conclusion

References

4. Estimation and Analysis of Prediction Rate of Pre-Trained Deep Learning Network in Classification of Brain Tumor MRI Images

4.1 Introduction

4.2 Classes of Brain Tumors

4.3 Literature Survey

4.4 Methodology

4.5 Conclusion

References

5. An Intelligent Healthcare Monitoring System for Coma Patients

5.1 Introduction

5.2 Related Works

5.3 Materials and Methods

5.3.1 Existing System

5.3.2 Proposed System

5.3.3 Working

5.3.4 Module Description. 5.3.4.1 Pulse Sensor

5.3.4.2 Temperature Sensor

5.3.4.3 Spirometer

5.3.4.4 OpenCV (Open Source Computer Vision)

5.3.4.4.1 Imutils

5.3.4.4.2 Dlib

5.3.4.5 Raspberry Pi

5.3.4.6 USB Camera

5.3.4.7 AVR Module

5.3.4.8 Power Supply

5.3.4.9 USB to TTL Converter

5.3.4.10 EEG of Comatose Patients

5.4 Results and Discussion

5.5 Conclusion

References

6. Deep Learning Interpretation of Biomedical Data

6.1 Introduction

6.2 Deep Learning Models

6.2.1 Recurrent Neural Networks

6.2.2 LSTM/GRU Networks

6.2.3 Convolutional Neural Networks

6.2.4 Deep Belief Networks

6.2.5 Deep Stacking Networks

6.3 Interpretation of Deep Learning With Biomedical Data

6.4 Conclusion

References

7. Evolution of Electronic Health Records

7.1 Introduction

7.2 Traditional Paper Method

7.3 IoMT

7.4 Telemedicine and IoMT

7.4.1 Advantages of Telemedicine

7.4.2 Drawbacks

7.4.3 IoMT Advantages with Telemedicine

7.4.4 Limitations of IoMT With Telemedicine

7.5 Cyber Security

7.6 Materials and Methods. 7.6.1 General Method

7.6.2 Data Security

7.7 Literature Review

7.8 Applications of Electronic Health Records. 7.8.1 Clinical Research. 7.8.1.1 Introduction

7.8.1.2 Data Significance and Evaluation

7.8.1.3 Conclusion

7.8.2 Diagnosis and Monitoring. 7.8.2.1 Introduction

7.8.2.2 Contributions

7.8.2.3 Applications

7.8.3 Track Medical Progression. 7.8.3.1 Introduction

7.8.3.2 Method Used

7.8.3.3 Conclusion

7.8.4 Wearable Devices. 7.8.4.1 Introduction

7.8.4.2 Proposed Method

7.8.4.3 Conclusion

7.9 Results and Discussion

7.10 Challenges Ahead

7.11 Conclusion

References

8. Architecture of IoMT in Healthcare

8.1 Introduction

8.1.1 On-Body Segment

8.1.2 In-Home Segment

8.1.3 Network Segment Layer

8.1.4 In-Clinic Segment

8.1.5 In-Hospital Segment

8.1.6 Future of IoMT?

8.2 Preferences of the Internet of Things

8.2.1 Cost Decrease

8.2.2 Proficiency and Efficiency

8.2.3 Business Openings

8.2.4 Client Experience

8.2.5 Portability and Nimbleness

8.3 IoMT Progress in COVID-19 Situations: Presentation

8.3.1 The IoMT Environment

8.3.2 IoMT Pandemic Alleviation Design

8.3.3 Man-Made Consciousness and Large Information Innovation in IoMT

8.4 Major Applications of IoMT

References

9. Performance Assessment of IoMT Services and Protocols

9.1 Introduction

9.2 IoMT Architecture and Platform

9.2.1 Architecture

9.2.2 Devices Integration Layer

9.3 Types of Protocols

9.3.1 Internet Protocol for Medical IoT Smart Devices

9.3.1.1 HTTP

9.3.1.2 Message Queue Telemetry Transport (MQTT)

9.3.1.3 Constrained Application Protocol (CoAP)

9.3.1.4 AMQP: Advanced Message Queuing Protocol (AMQP)

9.3.1.5 Extensible Message and Presence Protocol (XMPP)

9.3.1.6 DDS

9.4 Testing Process in IoMT

9.5 Issues and Challenges

9.6 Conclusion

References

10. Performance Evaluation of Wearable IoT-Enabled Mesh Network for Rural Health Monitoring

10.1 Introduction

10.2 Proposed System Framework. 10.2.1 System Description

10.2.2 Health Monitoring Center

10.2.2.1 Body Sensor

10.2.2.2 Wireless Sensor Coordinator/Transceiver

10.2.2.3 Ontology Information Center

Algorithm 10.1 Lookup request

10.2.2.4 Mesh Backbone-Placement and Routing

Algorithm 10.2 Differential Evolution for mesh backbone

10.3 Experimental Evaluation

10.4 Performance Evaluation

10.4.1 Energy Consumption

10.4.2 Survival Rate

10.4.3 End-to-End Delay

10.5 Conclusion

References

11. Management of Diabetes Mellitus (DM) for Children and Adults Based on Internet of Things (IoT)

11.1 Introduction

11.1.1 Prevalence

11.1.2 Management of Diabetes

11.1.3 Blood Glucose Monitoring

11.1.4 Continuous Glucose Monitors

11.1.5 Minimally Invasive Glucose Monitors

11.1.6 Non-Invasive Glucose Monitors

11.1.7 Existing System

11.2 Materials and Methods

11.2.1 Artificial Neural Network

11.2.2 Data Acquisition

11.2.3 Histogram Calculation

11.2.4 IoT Cloud Computing

11.2.5 Proposed System

11.2.6 Advantages

11.2.7 Disadvantages

11.2.8 Applications

11.2.9 Arduino Pro Mini

11.2.10 LM78XX

11.2.11 MAX30100

11.2.12 LM35 Temperature Sensors

11.3 Results and Discussion

11.4 Summary

11.5 Conclusion

References

12. Wearable Health Monitoring Systems Using IoMT

12.1 Introduction

12.2 IoMT in Developing Wearable Health Surveillance System

12.2.1 A Wearable Health Monitoring System with Multi-Parameters

12.2.2 Wearable Input Device for Smart Glasses Based on a Wristband-Type Motion-Aware Touch Panel

12.2.3 Smart Belt: A Wearable Device for Managing Abdominal Obesity

12.2.4 Smart Bracelets: Automating the Personal Safety Using Wearable Smart Jewelry

12.3 Vital Parameters That Can Be Monitored Using Wearable Devices

12.3.1 Electrocardiogram

12.3.2 Heart Rate

12.3.3 Blood Pressure

12.3.4 Respiration Rate

12.3.5 Blood Oxygen Saturation

12.3.6 Blood Glucose

12.3.7 Skin Perspiration

12.3.8 Capnography

12.3.9 Body Temperature

12.4 Challenges Faced in Customizing Wearable Devices

12.4.1 Data Privacy

12.4.2 Data Exchange

12.4.3 Availability of Resources

12.4.4 Storage Capacity

12.4.5 Modeling the Relationship Between Acquired Measurement and Diseases

12.4.6 Real-Time Processing

12.4.7 Intelligence in Medical Care

12.5 Conclusion

References

13. Future of Healthcare: Biomedical Big Data Analysis and IoMT

13.1 Introduction

13.2 Big Data and IoT in the Healthcare Industry

13.3 Biomedical Big Data Types

13.3.1 Electronic Health Records

13.3.2 Administrative and Claims Data

13.3.3 International Patient Disease Registries

13.3.4 National Health Surveys

13.3.5 Clinical Research and Trials Data

13.4 Biomedical Data Acquisition Using IoT

13.4.1 Wearable Sensor Suit

13.4.2 Smartphones

13.4.3 Smart Watches

13.5 Biomedical Data Management Using IoT

13.5.1 Apache Spark Framework

13.5.2 MapReduce

13.5.3 Apache Hadoop

13.5.4 Clustering Algorithms

13.5.5 K-Means Clustering

13.5.6 Fuzzy C-Means Clustering

13.5.7 DBSCAN

13.6 Impact of Big Data and IoMT in Healthcare

13.7 Discussions and Conclusions

References

14. Medical Data Security Using Blockchain With Soft Computing Techniques: A Review

14.1 Introduction

14.2 Blockchain

14.2.1 Blockchain Architecture

14.2.2 Types of Blockchain Architecture

14.2.3 Blockchain Applications

14.2.4 General Applications of the Blockchain

14.3 Blockchain as a Decentralized Security Framework

14.3.1 Characteristics of Blockchain

14.3.2 Limitations of Blockchain Technology

14.4 Existing Healthcare Data Predictive Analytics Using Soft Computing Techniques in Data Science

14.4.1 Data Science in Healthcare

14.5 Literature Review: Medical Data Security in Cloud Storage

14.6 Conclusion

References

15. Electronic Health Records: A Transitional View

15.1 Introduction

15.2 Ancient Medical Record, 1600 BC

15.3 Greek Medical Record

15.4 Islamic Medical Record

15.5 European Civilization

15.6 Swedish Health Record System

15.7 French and German Contributions

15.8 American Descriptions

15.9 Beginning of Electronic Health Recording

15.10 Conclusion

References

Index

Also of Interest

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Scrivener Publishing 100 Cummings Center, Suite 541J Beverly, MA 01915-6106

.....

1. Cancer Research UK, Worldwide cancer statistics, 2012, https://www.cancerresearchuk.org/health-professional/cancer-statistics/worldwide-cancer#collapseZero.

2. American Cancer Society, Lung cancer prevention and early detection, 2016, https://www.cancer.org/cancer/lung-cancer/prevention-and-early-detection/signs-and-symptoms.html.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу The Internet of Medical Things (IoMT)
Подняться наверх