Geophysical Monitoring for Geologic Carbon Storage
Реклама. ООО «ЛитРес», ИНН: 7719571260.
Оглавление
Группа авторов. Geophysical Monitoring for Geologic Carbon Storage
Table of Contents
List of Tables
List of Illustrations
Guide
Pages
Geophysical Monograph Series
Geophysical Monitoring for Geologic Carbon Storage. Geophysical Monograph 272
LIST OF CONTRIBUTORS
PREFACE
1 Evaluating Different Geophysical Monitoring Techniques for Geological Carbon Storage
ABSTRACT
1.1. INTRODUCTION
1.2. GEODETIC AND SURFACE MONITORING
1.3. SUBSURFACE SEISMIC MONITORING
1.4. SUBSURFACE NONSEISMIC MONITORING
1.5. CASE STUDIES OF GEOPHYSICAL MONITORING
ACKNOWLEDGMENTS
2 Geodetic Monitoring of the Geological Storage ofGreenhouse Gas Emissions
ABSTRACT
2.1. INTRODUCTION
2.2. OBSERVATIONAL METHODS. 2.2.1. Overview
2.2.2. SAR Interferometry
2.2.3 Multitemporal Analysis
2.2.4 Two‐Dimensional Displacement Decomposition
2.3. DATA INTERPRETATION AND INVERSION METHODS
2.4. FIELD APPLICATIONS
2.4.1. In Salah, Algeria
Envisat Range Change Observations
X‐Band InSAR and Multicomponent Displacement Data
2.4.2. Aquistore, Canada
2.4.3. Illinois Basin Decatur Project, USA
2.5. CONCLUSIONS
ACKNOWLEDGMENTS
REFERENCES
3 Surface Monitoring, Verification, and Accounting (MVA) for Geologic Sequestration Storage
ABSTRACT
3.1. INTRODUCTION
3.2. CURRENT STATE OF THE ART
3.2.1. Point Source or In Situ Measurements
Passive Absorption Spectroscopy
Active Absorption Spectroscopy
Cavity Ringdown Spectroscopy
Frequency Modulated Spectroscopy
3.2.2. Standoff or Remote Methods
3.3. FREQUENCY MODULATED SPECTROSCOPY
3.4. FMS PHYSICS AND MODELING
3.5. RESULTS
3.5.1. In Situ Results
3.5.2. Remote Results
3.6. CONCLUSION
ACKNOWLEDGMENTS
REFERENCES
4 Optimal Design of Microseismic Monitoring Network for Cost‐Effective Monitoring of Geologic Carbon Storage
ABSTRACT
4.1. INTRODUCTION
4.2. METHOD
4.3. OPTIMAL DESIGN OF A SURFACE SEISMIC ARRAY. 4.3.1. Models for the Kimberlina Site
4.3.2. Synthetic Event Locations With Different Surface Seismic Networks
4.3.3. Location Accuracy for Different Surface Seismic Networks
4.4. OPTIMAL DESIGN OF A BOREHOLE GEOPHONE ARRAY
4.5. DISCUSSION
4.6 CONCLUSIONS
ACKNOWLEDGMENTS
REFERENCES
5 Seismic Response of Fractured Sandstone During Geological Sequestration of CO2 : Laboratory Measurements at Mid (Sonic) Frequencies and X‐Ray CT Fluid Phase Visualization
ABSTRACT
5.1. INTRODUCTION
5.2. EXPERIMENTAL SETUP. 5.2.1. Split‐Hopkinson Resonant Bar (SHRB)
5.2.2. Experimental Procedures
5.2.3. Samples and Test Cases
5.2.4. Determination of Elastic Moduli and Attenuation From Measured Resonances
5.3. EXPERIMENTAL RESULTS. 5.3.1. Dry‐Sample Tests
5.3.2. scCO2 Injection Tests. Seismic Responses
Fluid Phase Distribution
5.4. DISCUSSION
5.4.1. Gassmann Model Interpretation of Young's Modulus Behavior
5.4.2. Frequency‐Dependent Fluid Pressure Diffusion Effect for Core‐Perpendicular Fracture Cases
5.5. CONCLUSIONS
ACKNOWLEDGMENTS
REFERENCES
6 Dynamic Moduli and Attenuation: Rhyolite and Carbonate Examples
ABSTRACT
6.1. INTRODUCTION
6.2. DATA COLLECTION AND METHODOLOGY
6.2.1. Determination of Elastic Moduli and Rock Properties
6.2.2. Determination of the Quality Factor (Qp)
6.3. LABORATORY CORE MEASUREMENTS
6.4. INTERPRETATION OF RESULTS. 6.4.1. Enhanced Geothermal System (EGS) Site
6.4.2. Carbonate EOR Site
6.5. CONCLUSIONS
ACKNOWLEDGMENTS
APPENDIX. DERIVATION OF THE QUALITY FACTOR Q
REFERENCES
7 Elastic‐Wave Sensitivity Propagation for Optimal Time‐LapseSeismic Survey Design
ABSTRACT
7.1. INTRODUCTION
7.2. METHODOLOGY. 7.2.1. Elastic‐Wave Sensitivity Propagation
7.2.2. Seismic Monitoring Criteria
7.3. NUMERICAL RESULTS
7.3.1. Elastic‐Wave Sensitivity for the SEG‐EAGE Salt Model
7.3.2. Elastic‐Wave Sensitivity Analysis for CO2 Leakage
7.3.3. Elastic‐Wave Sensitivity Analysis in Anisotropic Media
7.4. CONCLUSIONS
ACKNOWLEDGMENTS
REFERENCES
8 Time‐Lapse Offset VSP Monitoring at the Aneth CO2 ‐EOR Field
ABSTRACT
8.1. INTRODUCTION
8.2. TIME‐LAPSE OFFSET VSP SURVEYS
8.3 RELOCATION OF OFFSET VSP SOURCES
8.4. BALANCING TIME‐LAPSE VSP DATA
8.5. DEPTH MIGRATION OF TIME‐LAPSE OFFSET VSP DATA
8.6. TIME‐LAPSE RESERVOIR CHANGE
8.7. CONCLUSIONS
ACKNOWLEDGMENTS
REFERENCES
9 Reverse Time Migration of Time‐Lapse Walkaway VSP Data for Monitoring CO2 Injection at the SACROC CO2 ‐EOR Field
ABSTRACT
9.1. INTRODUCTION
9.2. WALKAWAY VSP DATA RECORDED AT SACROC FIELD
9.3. STATICS CORRECTION AND AMPLITUDE BALANCING
9.4. RTM IMAGING. 9.4.1. Conventional RTM
9.4.2. Angle‐Domain Imaging Analysis
9.5. DISCUSSION
9.6. CONCLUSIONS
ACKNOWLEDGMENTS
REFERENCES
10 Least‐Squares Reverse‐Time Migration for Reservoir Imaging at the Cranfield CO2 ‐EOR Field
ABSTRACT
10.1. INTRODUCTION
10.2. LEAST‐SQUARES REVERSE‐TIME MIGRATION
10.3. LEAST‐SQUARES REVERSE‐TIME MIGRATION OF VSP DATA
10.3.1 Cranfield VSP Data
10.3.2. Velocity Model
10.3.3. Synthetic Examples
10.3.4. Migration Imaging of Cranfield 3D VSP Field Data
VSP Migration With Data From Sources Along a North‐South Line
VSP Migration With Data From Sources Along an East‐West Line
3D VSP Migration With Data From Sources Around the Monitoring Well
10.4. DISCUSSION
10.5. CONCLUSIONS
ACKNOWLEDGMENTS
REFERENCES
11 Quantifying Changes of Subsurface Geophysical Properties Using Double‐Difference Seismic‐Waveform Inversion
ABSTRACT
11.1. INTRODUCTION
11.2. METHODOLOGY. 11.2.1. Acoustic‐Waveform and Elastic‐Waveform Inversion
11.2.2. Double‐Difference Acoustic‐ andElastic‐Waveform Inversion
11.2.3. Preconditioned Waveform Inversion
11.2.4. Waveform Inversion With Regularization
11.2.5. Waveform Inversion With the Modified Total‐Variation Regularization
11.3. DOUBLE‐DIFFERENCE WAVEFORM INVERSION WITH A PRIORI INFORMATION
11.4. DOUBLE‐DIFFERENCE WAVEFORM INVERSION WITH THE MODIFIED TOTAL‐VARIATION REGULARIZATION
11.5. RESULTS. 11.5.1. Synthetic Time‐Lapse Elastic Velocity Models for Reservoir Monitoring
11.5.2. Application to Time‐Lapse Walkaway VSP Data From SACROC CO2‐EOR Field
11.6. CONCLUSION
ACKNOWLEDGMENTS
REFERENCES
12 Multicomponent Seismic Data and Joint Inversion
ABSTRACT
12.1. INTRODUCTION
12.2. BACKGROUND: USES AND LIMITATIONS OF MULTICOMPONENT SEISMIC DATA
12.3. INFORMATION CONTENT OF MULTICOMPONENT DATA
12.4. DIRECT DETECTION OF FRACTURING WITH SEISMIC DATA
12.5. JOINT INVERSION OF MULTICOMPONENT SEISMIC DATA FOR SUBSURFACE CHARACTERIZATION
12.6. KEVIN DOME CASE STUDY OF QUADRI‐JOINT INVERSION
12.6.1. The Joint Multicomponent Inversion Workflow
Step 1: Prestack Stratigraphic Inversion
Step 2: Computation of Registration Law (Warping)
Step 3: Joint Prestack Stratigraphic Inversion
12.6.2. QC of Kevin Dome Joint Inversion Results
12.7. APPLICATION OF JOINT INVERSION TO CHARACTERIZATION OF THE DUPEROW CO2‐BEARING ZONE AT KEVIN DOME
12.7.1. Comparison With Well Data: Mid‐Duperow Porosity Zone
12.7.2. Mid‐Duperow Porosity Estimation From Rock Physics Transforms: Comparison With Direct Density Estimation
12.8. DISCUSSION
ACKNOWLEDGMENTS
REFERENCES
13 Tracking Subsurface Supercritical CO2 Using Advanced Reflection Seismic and Well Log‐Based Workflows Incorporating Fluid Density and Pore Pressure Effects: Relevance to Reservoir Monitoring and CO2 EOR
ABSTRACT
13.1. INTRODUCTION
13.2. PETROPHYSICAL MODEL
13.3. METHODS
13.4. RESULTS
13.5. CONCLUSIONS
ACKNOWLEDGMENTS
REFERENCES
14 Monitoring Carbon Storage Sites With Time‐Lapse Gravity Surveys
ABSTRACT
14.1. INTRODUCTION
14.2. GRAVITY ANOMALIES INDUCED BY CO2 INJECTION
14.2.1. Theory and Governing Equations
14.2.2. Key Parameter: Density Contrast
14.3. GRAVITY MEASUREMENTS. 14.3.1. Land‐Surface Instruments
14.3.2. Marine Gravimeters
14.3.3. Borehole Gravimeters
14.3.4. Space Gravimetry
14.3.5. Influences of Natural and Induced Phenomena
14.4. MODELING GRAVITY ANOMALY ASSOCIATED WITH A CO2 PLUME
14.5. DEPLOYMENT OF GRAVITY SURVEYS: COST AND DESIGN
14.6. TIME‐LAPSE GRAVITY MONITORING ON CCS SITES: REAL CASE STUDIES
14.6.1. Time‐Lapse Gravity Monitoring at an Offshore CO2 Storage Site: Sleipner, Norway
14.6.2. First Borehole Gravity Survey on a CCS Site: Cranfield, Mississippi, USA
14.6.3. Borehole Gravity Monitoring Within a Closed Carbonate Reef Reservoir in the Michigan Basin
14.7. CONCLUSIONS
ACKNOWLEDGMENTS
REFERENCES
15 Fundamentals of Electrical and Electromagnetic Techniques for CO2 Monitoring
ABSTRACT
15.1. INTRODUCTION
15.2. PHYSICAL PROPERTIES OF CARBON DIOXIDE (CO2)
15.3. ROCK PROPERTIES AND RESISTIVITY
15.4. BASIC PRINCIPLES OF ELECTRICAL AND ELECTROMAGNETIC TECHNIQUES. 15.4.1 Resistivity Techniques
15.4.2. Electrical Resistance Tomography (ERT)
15.4.3. Electromagnetic (EM) Techniques
15.5. MODELS FOR SIMPLE RESISTIVE BODIES. 15.5.1. Layer Models
15.5.2. Sphere Models
15.6. ADVANTAGES AND LIMITATIONS OF ELECTRICAL AND EM TECHNIQUES IN DETECTING RESISTORS. 15.6.1. Magnetometric Resistivity (MMR)
15.6.2. Magnetotellurics (MT)
15.6.3. EM Techniques Using Subsurface Sources
15.6.4. Resistivity Techniques Using Borehole Sources
15.7. MONITORING OF SHALLOW CO2 LEAKS
ACKNOWLEDGMENTS
REFERENCES
16 Monitoring Geologic Carbon Sequestration Using Electrical Resistivity Tomography
ABSTRACT
16.1. INTRODUCTION
16.2. ELECTRICAL PROPERTIES OF EARTH MATERIALS
16.3. PRINCIPLES OF ELECTRICAL RESISTIVITY TOMOGRAPHY
16.3.1. Forward Model
16.3.2. Inversion
16.4. MONITORING SYSTEM DESIGN AND DEPLOYMENT
16.4.1. Design and Deployment
16.4.2. Data Acquisition
16.5. DATA PROCESSING
16.5.1. Preprocessing
16.5.2. Time‐Lapse Inversion
16.6. CASE STUDIES
16.6.1. Deepest ERT Monitoring System at Cranfield
16.6.2. ERT Monitoring of CO2 Leakage in a Shallow Aquifer at Vrøgum
16.7. FUTURE STUDIES
ACKNOWLEDGMENTS
REFERENCES
17 Monitoring of Large‐Scale CO2 Injection Using CSEM, Gravimetric, and Seismic AVO Data
ABSTRACT
17.1. INTRODUCTION
17.1.1. Controlled‐Source Electromagnetics
17.1.2. Seismics and Gravimetrics
17.1.3 Joint Utilization of Disparate Data Types
17.1.4 Parameterization
17.1.5 Sampling the Posterior Distribution
17.1.6 Skade Formation
17.1.7 Outline
17.2 FORWARD MODELS
17.2.1 CSEM
17.2.2 Gravimetry
17.2.3. Seismic AVO
17.3. INVERSE PROBLEM
17.3.1. Parameterization
17.3.2 Ensemble‐Based Bayesian Inversion
Kalman Filter
Ensemble Smoother
Ensemble Smoother With Multiple Data Assimilation
Ensemble Kalman Filter
17.3.3 Sequential Utilization of Different Data Types
17.4 NUMERICAL EXPERIMENTS
17.4.1 Skade Formation and Synthetic Data Generation
17.4.2 Set Up of Experiments
17.4.3 Inversion Results
Step 1: CSEM Inversion
Step 1: Gravity Inversion
AVOw
Step 2: AVOc
Step 2: AVOg
Data Misfit
17.4.4 Discussion
17.5 CONCLUSIONS
APPENDIX. APPENDIX A REDUCED, SMOOTHED LEVEL‐SET REPRESENTATION
Reduced Parameterization of Level‐Set and Coefficient Functions
Smoothed Level‐Set Representation
APPENDIX B INITIAL ENSEMBLE GENERATION
APPENDIX C SAMPLE MEAN AND COVARIANCE MATRIX
REFERENCES
18 Self‐Potential Monitoring for Geologic Carbon Dioxide Storage
ABSTRACT
18.1. INTRODUCTION
18.2. MECHANISMS OF SP GENERATION. 18.2.1. Electrokinetic Coupling
18.2.2. EKP Postprocessor
18.2.3. Geobattery
18.3. ILLUSTRATIVE CALCULATIONS OF SP POSTPROCESSOR. 18.3.1. Reservoir Simulation
18.3.2. SP Postprocessor Calculations of Electrokinetic Coupling
18.3.3. SP Postprocessor Calculations of Geobattery
18.4. FIELD OBSERVATIONS
18.4.1. SP Observations Near Wellheads at the Aneth Oil Field
18.4.2. SP Monitoring of Metallic Well Casing at CCUS Test Site
18.5. CONCLUDING REMARKS
ACKNOWLEDGMENTS
REFERENCES
19 Microseismic Monitoring, Event Location, and Focal Mechanisms at the Illinois Basin–Decatur Project, Decatur, Illinois, USA
ABSTRACT
19.1. INTRODUCTION
19.2. GEOLOGIC SETTING AND SEISMIC HISTORY. 19.2.1. State and Regional
19.2.2. Site Characterization
19.2.3. Seismic Surveys
19.3. MONITORING. 19.3.1. Formation Pressure Monitoring
19.3.2 Microseismicity Monitoring
19.4. SUBSURFACE ARRAY CALIBRATION. 19.4.1. Processing: Tool Orientation and Velocity Modeling
19.5. EVENT CHARACTERIZATION. 19.5.1. Event Location
19.5.2 Magnitude
19.5.3 Trends in Microseismicity. IBDP Preinjection Microseismicity
CO2 Induced Microseismicity: Other Sites
IBDP Microseismicity During Injection
Cluster Development
19.5.4. Fault Plane Solutions
19.6. MODEL INTEGRATION
19.6.1. Hydraulic Response and Reservoir Simulation
19.6.2. Coupled Hydromechanical Modeling
19.6.3. Microseismic Response Modeling
19.7. DISCUSSION AND SUMMARY
ACKNOWLEDGMENTS
REFERENCES
20 Associated Storage With Enhanced Oil Recovery: A Large‐Scale Carbon Capture, Utilization, and Storage Demonstration in Farnsworth, Texas, USA
ABSTRACT
20.1. INTRODUCTION
20.2. METHODS
20.3. SITE CHARACTERIZATION
20.4. MVA
20.5. SIMULATION AND MODELING
20.6. RISK ASSESSMENT
20.7. CO2 ACCOUNTING AND IMPACT TO OIL RECOVERY
20.8. CONCLUSIONS
ACKNOWLEDGMENTS
DISCLAIMER
REFERENCES
21 Testing Geophysical Methods for Assessing CO2 Migration at the SECARB Early Test, Cranfield, Mississippi, USA
ABSTRACT
21.1. INTRODUCTION. 21.1.1. Role of Monitoring at a CO2 Storage Site
21.1.2. Department of Energy's RCSP Program
21.1.3. Geologic Setting and Field Development at Cranfield
21.2. METHODS. 21.2.1. Tool Selection and Tool Deployment
21.3. RESULTS. 21.3.1. Characterization and Injection and Production Histories to Constrain Models
21.3.2. Response of Geophysical Tools
21.3.3. Time‐Lapse 3D Seismic
21.3.4. Vertical Seismic Profiling (VSP)
21.3.5. Time‐Lapse Cross‐Well Seismic
21.3.6. Continuous Active‐Source Seismic Monitoring (CASSM)
21.3.7. Electrical Resistance Tomography (ERT)
21.3.8. Borehole Gravity
21.3.9. Pulsed Neutron Logging
21.3.10. Time‐Lapse Wireline Sonic
21.3.11. Resistivity Logs
21.3.12. Fluid Density Logging
21.3.13. Airborne Conductivity and Magnetic Survey
21.3.14. Microseismic Monitoring
21.3.15. Downhole Fiber Optic
21.4. DISCUSSION
21.5. CONCLUSIONS
REFERENCES
22 Toward Quantitative CO2 Monitoring at Sleipner, Norway
ABSTRACT
22.1. INTRODUCTION
22.2. GEOLOGICAL BACKGROUND AND MODELS. 22.2.1. Geological Settings
22.2.2. Rock Physics Properties
22.3. METHODOLOGY
22.3.1. Full Waveform Inversion
22.3.2. Rock Physics Models
22.3.3. Rock Physics Inversion
22.4. SLEIPNER CASE STUDY
22.4.1. FWI Results
22.4.2. RPI Results. Baseline Estimates of Rock Frame Properties
Monitor Estimates of CO2 Saturation and Patchiness Exponent
22.5. DISCUSSION
22.6. CONCLUSIONS
ACKNOWLEDGMENTS
REFERENCES
23 Geophysical Monitoring of CO2 Injection at Ketzin, Germany
ABSTRACT
23.1. INTRODUCTION
23.2. KETZIN SITE GEOLOGY AND CHARACTERIZATION
23.3. CO2 INJECTION OPERATION
23.4. PETROPHYSICAL MEASUREMENTS
23.5. GEOPHYSICAL MONITORING
23.5.1. Seismic Surveying
4D Seismic Surveys
Seismic Impedance Inversion
Repeated 2D Seismic Surveys and VSP
Crosshole Seismic Surveys
Seismic Full‐Waveform Inversion
Permanent Geophone/Hydrophone Array
23.5.2. Electrical Resistivity Tomography (ERT)
Crosshole ERT
Surface‐Downhole ERT
23.6. DISCUSSION AND RECOMMENDATIONS
23.7. CONCLUSIONS
ACKNOWLEDGMENTS
REFERENCES
Note
24 Geophysical Monitoring Techniques: Current Status and Future Directions
ABSTRACT
24.1. SUMMARY OF ADVANTAGES AND LIMITATIONS
24.2. FUTURE RESEARCH DIRECTIONS
ACKNOWLEDGMENTS
Index
WILEY END USER LICENSE AGREEMENT
Отрывок из книги
217 Deep Earth: Physics and Chemistry of the Lower Mantle and Core Hidenori Terasaki and Rebecca A. Fischer ( Eds.)
218 Integrated Imaging of the Earth: Theory and Applications Max Moorkamp, Peter G. Lelievre, Niklas Linde, and Amir Khan (Eds.)
.....
268 Distributed Acoustic Sensing in Geophysics: Methods and Applications Yingping Li, Martin Karrenbach, and Jonathan B. Ajo‐Franklin (Eds.)
269 Congo Basin Hydrology, Climate, and Biogeochemistry: A Foundation for the Future Raphael M.Tshimanga, Guy D. Moukandi N’kaya, and Douglas Alsdorf (Eds.)
.....