Geophysical Monitoring for Geologic Carbon Storage

Geophysical Monitoring for Geologic Carbon Storage
Автор книги: id книги: 2285454     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 19282,6 руб.     (210$) Читать книгу Купить и скачать книгу Электронная книга Жанр: География Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119156840 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Geophysical Monitoring for Geologic Carbon Storage Geophysical Monitoring for Geologic Carbon Storage Storing carbon dioxide in underground geological formations is emerging as a promising technology to reduce carbon dioxide emissions in the atmosphere. A range of geophysical techniques can be deployed to remotely track carbon dioxide plumes and monitor changes in the subsurface, which is critical for ensuring for safe, long-term storage. Geophysical Monitoring for Geologic Carbon Storage provides a comprehensive review of different geophysical techniques currently in use and being developed, assessing their advantages and limitations. Volume highlights include: Geodetic and surface monitoring techniques Subsurface monitoring using seismic techniques Subsurface monitoring using non-seismic techniques Case studies of geophysical monitoring at different geologic carbon storage sites The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Оглавление

Группа авторов. Geophysical Monitoring for Geologic Carbon Storage

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Geophysical Monograph Series

Geophysical Monitoring for Geologic Carbon Storage. Geophysical Monograph 272

LIST OF CONTRIBUTORS

PREFACE

1 Evaluating Different Geophysical Monitoring Techniques for Geological Carbon Storage

ABSTRACT

1.1. INTRODUCTION

1.2. GEODETIC AND SURFACE MONITORING

1.3. SUBSURFACE SEISMIC MONITORING

1.4. SUBSURFACE NONSEISMIC MONITORING

1.5. CASE STUDIES OF GEOPHYSICAL MONITORING

ACKNOWLEDGMENTS

2 Geodetic Monitoring of the Geological Storage ofGreenhouse Gas Emissions

ABSTRACT

2.1. INTRODUCTION

2.2. OBSERVATIONAL METHODS. 2.2.1. Overview

2.2.2. SAR Interferometry

2.2.3 Multitemporal Analysis

2.2.4 Two‐Dimensional Displacement Decomposition

2.3. DATA INTERPRETATION AND INVERSION METHODS

2.4. FIELD APPLICATIONS

2.4.1. In Salah, Algeria

Envisat Range Change Observations

X‐Band InSAR and Multicomponent Displacement Data

2.4.2. Aquistore, Canada

2.4.3. Illinois Basin Decatur Project, USA

2.5. CONCLUSIONS

ACKNOWLEDGMENTS

REFERENCES

3 Surface Monitoring, Verification, and Accounting (MVA) for Geologic Sequestration Storage

ABSTRACT

3.1. INTRODUCTION

3.2. CURRENT STATE OF THE ART

3.2.1. Point Source or In Situ Measurements

Passive Absorption Spectroscopy

Active Absorption Spectroscopy

Cavity Ringdown Spectroscopy

Frequency Modulated Spectroscopy

3.2.2. Standoff or Remote Methods

3.3. FREQUENCY MODULATED SPECTROSCOPY

3.4. FMS PHYSICS AND MODELING

3.5. RESULTS

3.5.1. In Situ Results

3.5.2. Remote Results

3.6. CONCLUSION

ACKNOWLEDGMENTS

REFERENCES

4 Optimal Design of Microseismic Monitoring Network for Cost‐Effective Monitoring of Geologic Carbon Storage

ABSTRACT

4.1. INTRODUCTION

4.2. METHOD

4.3. OPTIMAL DESIGN OF A SURFACE SEISMIC ARRAY. 4.3.1. Models for the Kimberlina Site

4.3.2. Synthetic Event Locations With Different Surface Seismic Networks

4.3.3. Location Accuracy for Different Surface Seismic Networks

4.4. OPTIMAL DESIGN OF A BOREHOLE GEOPHONE ARRAY

4.5. DISCUSSION

4.6 CONCLUSIONS

ACKNOWLEDGMENTS

REFERENCES

5 Seismic Response of Fractured Sandstone During Geological Sequestration of CO2 : Laboratory Measurements at Mid (Sonic) Frequencies and X‐Ray CT Fluid Phase Visualization

ABSTRACT

5.1. INTRODUCTION

5.2. EXPERIMENTAL SETUP. 5.2.1. Split‐Hopkinson Resonant Bar (SHRB)

5.2.2. Experimental Procedures

5.2.3. Samples and Test Cases

5.2.4. Determination of Elastic Moduli and Attenuation From Measured Resonances

5.3. EXPERIMENTAL RESULTS. 5.3.1. Dry‐Sample Tests

5.3.2. scCO2 Injection Tests. Seismic Responses

Fluid Phase Distribution

5.4. DISCUSSION

5.4.1. Gassmann Model Interpretation of Young's Modulus Behavior

5.4.2. Frequency‐Dependent Fluid Pressure Diffusion Effect for Core‐Perpendicular Fracture Cases

5.5. CONCLUSIONS

ACKNOWLEDGMENTS

REFERENCES

6 Dynamic Moduli and Attenuation: Rhyolite and Carbonate Examples

ABSTRACT

6.1. INTRODUCTION

6.2. DATA COLLECTION AND METHODOLOGY

6.2.1. Determination of Elastic Moduli and Rock Properties

6.2.2. Determination of the Quality Factor (Qp)

6.3. LABORATORY CORE MEASUREMENTS

6.4. INTERPRETATION OF RESULTS. 6.4.1. Enhanced Geothermal System (EGS) Site

6.4.2. Carbonate EOR Site

6.5. CONCLUSIONS

ACKNOWLEDGMENTS

APPENDIX. DERIVATION OF THE QUALITY FACTOR Q

REFERENCES

7 Elastic‐Wave Sensitivity Propagation for Optimal Time‐LapseSeismic Survey Design

ABSTRACT

7.1. INTRODUCTION

7.2. METHODOLOGY. 7.2.1. Elastic‐Wave Sensitivity Propagation

7.2.2. Seismic Monitoring Criteria

7.3. NUMERICAL RESULTS

7.3.1. Elastic‐Wave Sensitivity for the SEG‐EAGE Salt Model

7.3.2. Elastic‐Wave Sensitivity Analysis for CO2 Leakage

7.3.3. Elastic‐Wave Sensitivity Analysis in Anisotropic Media

7.4. CONCLUSIONS

ACKNOWLEDGMENTS

REFERENCES

8 Time‐Lapse Offset VSP Monitoring at the Aneth CO2 ‐EOR Field

ABSTRACT

8.1. INTRODUCTION

8.2. TIME‐LAPSE OFFSET VSP SURVEYS

8.3 RELOCATION OF OFFSET VSP SOURCES

8.4. BALANCING TIME‐LAPSE VSP DATA

8.5. DEPTH MIGRATION OF TIME‐LAPSE OFFSET VSP DATA

8.6. TIME‐LAPSE RESERVOIR CHANGE

8.7. CONCLUSIONS

ACKNOWLEDGMENTS

REFERENCES

9 Reverse Time Migration of Time‐Lapse Walkaway VSP Data for Monitoring CO2 Injection at the SACROC CO2 ‐EOR Field

ABSTRACT

9.1. INTRODUCTION

9.2. WALKAWAY VSP DATA RECORDED AT SACROC FIELD

9.3. STATICS CORRECTION AND AMPLITUDE BALANCING

9.4. RTM IMAGING. 9.4.1. Conventional RTM

9.4.2. Angle‐Domain Imaging Analysis

9.5. DISCUSSION

9.6. CONCLUSIONS

ACKNOWLEDGMENTS

REFERENCES

10 Least‐Squares Reverse‐Time Migration for Reservoir Imaging at the Cranfield CO2 ‐EOR Field

ABSTRACT

10.1. INTRODUCTION

10.2. LEAST‐SQUARES REVERSE‐TIME MIGRATION

10.3. LEAST‐SQUARES REVERSE‐TIME MIGRATION OF VSP DATA

10.3.1 Cranfield VSP Data

10.3.2. Velocity Model

10.3.3. Synthetic Examples

10.3.4. Migration Imaging of Cranfield 3D VSP Field Data

VSP Migration With Data From Sources Along a North‐South Line

VSP Migration With Data From Sources Along an East‐West Line

3D VSP Migration With Data From Sources Around the Monitoring Well

10.4. DISCUSSION

10.5. CONCLUSIONS

ACKNOWLEDGMENTS

REFERENCES

11 Quantifying Changes of Subsurface Geophysical Properties Using Double‐Difference Seismic‐Waveform Inversion

ABSTRACT

11.1. INTRODUCTION

11.2. METHODOLOGY. 11.2.1. Acoustic‐Waveform and Elastic‐Waveform Inversion

11.2.2. Double‐Difference Acoustic‐ andElastic‐Waveform Inversion

11.2.3. Preconditioned Waveform Inversion

11.2.4. Waveform Inversion With Regularization

11.2.5. Waveform Inversion With the Modified Total‐Variation Regularization

11.3. DOUBLE‐DIFFERENCE WAVEFORM INVERSION WITH A PRIORI INFORMATION

11.4. DOUBLE‐DIFFERENCE WAVEFORM INVERSION WITH THE MODIFIED TOTAL‐VARIATION REGULARIZATION

11.5. RESULTS. 11.5.1. Synthetic Time‐Lapse Elastic Velocity Models for Reservoir Monitoring

11.5.2. Application to Time‐Lapse Walkaway VSP Data From SACROC CO2‐EOR Field

11.6. CONCLUSION

ACKNOWLEDGMENTS

REFERENCES

12 Multicomponent Seismic Data and Joint Inversion

ABSTRACT

12.1. INTRODUCTION

12.2. BACKGROUND: USES AND LIMITATIONS OF MULTICOMPONENT SEISMIC DATA

12.3. INFORMATION CONTENT OF MULTICOMPONENT DATA

12.4. DIRECT DETECTION OF FRACTURING WITH SEISMIC DATA

12.5. JOINT INVERSION OF MULTICOMPONENT SEISMIC DATA FOR SUBSURFACE CHARACTERIZATION

12.6. KEVIN DOME CASE STUDY OF QUADRI‐JOINT INVERSION

12.6.1. The Joint Multicomponent Inversion Workflow

Step 1: Prestack Stratigraphic Inversion

Step 2: Computation of Registration Law (Warping)

Step 3: Joint Prestack Stratigraphic Inversion

12.6.2. QC of Kevin Dome Joint Inversion Results

12.7. APPLICATION OF JOINT INVERSION TO CHARACTERIZATION OF THE DUPEROW CO2‐BEARING ZONE AT KEVIN DOME

12.7.1. Comparison With Well Data: Mid‐Duperow Porosity Zone

12.7.2. Mid‐Duperow Porosity Estimation From Rock Physics Transforms: Comparison With Direct Density Estimation

12.8. DISCUSSION

ACKNOWLEDGMENTS

REFERENCES

13 Tracking Subsurface Supercritical CO2 Using Advanced Reflection Seismic and Well Log‐Based Workflows Incorporating Fluid Density and Pore Pressure Effects: Relevance to Reservoir Monitoring and CO2 EOR

ABSTRACT

13.1. INTRODUCTION

13.2. PETROPHYSICAL MODEL

13.3. METHODS

13.4. RESULTS

13.5. CONCLUSIONS

ACKNOWLEDGMENTS

REFERENCES

14 Monitoring Carbon Storage Sites With Time‐Lapse Gravity Surveys

ABSTRACT

14.1. INTRODUCTION

14.2. GRAVITY ANOMALIES INDUCED BY CO2 INJECTION

14.2.1. Theory and Governing Equations

14.2.2. Key Parameter: Density Contrast

14.3. GRAVITY MEASUREMENTS. 14.3.1. Land‐Surface Instruments

14.3.2. Marine Gravimeters

14.3.3. Borehole Gravimeters

14.3.4. Space Gravimetry

14.3.5. Influences of Natural and Induced Phenomena

14.4. MODELING GRAVITY ANOMALY ASSOCIATED WITH A CO2 PLUME

14.5. DEPLOYMENT OF GRAVITY SURVEYS: COST AND DESIGN

14.6. TIME‐LAPSE GRAVITY MONITORING ON CCS SITES: REAL CASE STUDIES

14.6.1. Time‐Lapse Gravity Monitoring at an Offshore CO2 Storage Site: Sleipner, Norway

14.6.2. First Borehole Gravity Survey on a CCS Site: Cranfield, Mississippi, USA

14.6.3. Borehole Gravity Monitoring Within a Closed Carbonate Reef Reservoir in the Michigan Basin

14.7. CONCLUSIONS

ACKNOWLEDGMENTS

REFERENCES

15 Fundamentals of Electrical and Electromagnetic Techniques for CO2 Monitoring

ABSTRACT

15.1. INTRODUCTION

15.2. PHYSICAL PROPERTIES OF CARBON DIOXIDE (CO2)

15.3. ROCK PROPERTIES AND RESISTIVITY

15.4. BASIC PRINCIPLES OF ELECTRICAL AND ELECTROMAGNETIC TECHNIQUES. 15.4.1 Resistivity Techniques

15.4.2. Electrical Resistance Tomography (ERT)

15.4.3. Electromagnetic (EM) Techniques

15.5. MODELS FOR SIMPLE RESISTIVE BODIES. 15.5.1. Layer Models

15.5.2. Sphere Models

15.6. ADVANTAGES AND LIMITATIONS OF ELECTRICAL AND EM TECHNIQUES IN DETECTING RESISTORS. 15.6.1. Magnetometric Resistivity (MMR)

15.6.2. Magnetotellurics (MT)

15.6.3. EM Techniques Using Subsurface Sources

15.6.4. Resistivity Techniques Using Borehole Sources

15.7. MONITORING OF SHALLOW CO2 LEAKS

ACKNOWLEDGMENTS

REFERENCES

16 Monitoring Geologic Carbon Sequestration Using Electrical Resistivity Tomography

ABSTRACT

16.1. INTRODUCTION

16.2. ELECTRICAL PROPERTIES OF EARTH MATERIALS

16.3. PRINCIPLES OF ELECTRICAL RESISTIVITY TOMOGRAPHY

16.3.1. Forward Model

16.3.2. Inversion

16.4. MONITORING SYSTEM DESIGN AND DEPLOYMENT

16.4.1. Design and Deployment

16.4.2. Data Acquisition

16.5. DATA PROCESSING

16.5.1. Preprocessing

16.5.2. Time‐Lapse Inversion

16.6. CASE STUDIES

16.6.1. Deepest ERT Monitoring System at Cranfield

16.6.2. ERT Monitoring of CO2 Leakage in a Shallow Aquifer at Vrøgum

16.7. FUTURE STUDIES

ACKNOWLEDGMENTS

REFERENCES

17 Monitoring of Large‐Scale CO2 Injection Using CSEM, Gravimetric, and Seismic AVO Data

ABSTRACT

17.1. INTRODUCTION

17.1.1. Controlled‐Source Electromagnetics

17.1.2. Seismics and Gravimetrics

17.1.3 Joint Utilization of Disparate Data Types

17.1.4 Parameterization

17.1.5 Sampling the Posterior Distribution

17.1.6 Skade Formation

17.1.7 Outline

17.2 FORWARD MODELS

17.2.1 CSEM

17.2.2 Gravimetry

17.2.3. Seismic AVO

17.3. INVERSE PROBLEM

17.3.1. Parameterization

17.3.2 Ensemble‐Based Bayesian Inversion

Kalman Filter

Ensemble Smoother

Ensemble Smoother With Multiple Data Assimilation

Ensemble Kalman Filter

17.3.3 Sequential Utilization of Different Data Types

17.4 NUMERICAL EXPERIMENTS

17.4.1 Skade Formation and Synthetic Data Generation

17.4.2 Set Up of Experiments

17.4.3 Inversion Results

Step 1: CSEM Inversion

Step 1: Gravity Inversion

AVOw

Step 2: AVOc

Step 2: AVOg

Data Misfit

17.4.4 Discussion

17.5 CONCLUSIONS

APPENDIX. APPENDIX A REDUCED, SMOOTHED LEVEL‐SET REPRESENTATION

Reduced Parameterization of Level‐Set and Coefficient Functions

Smoothed Level‐Set Representation

APPENDIX B INITIAL ENSEMBLE GENERATION

APPENDIX C SAMPLE MEAN AND COVARIANCE MATRIX

REFERENCES

18 Self‐Potential Monitoring for Geologic Carbon Dioxide Storage

ABSTRACT

18.1. INTRODUCTION

18.2. MECHANISMS OF SP GENERATION. 18.2.1. Electrokinetic Coupling

18.2.2. EKP Postprocessor

18.2.3. Geobattery

18.3. ILLUSTRATIVE CALCULATIONS OF SP POSTPROCESSOR. 18.3.1. Reservoir Simulation

18.3.2. SP Postprocessor Calculations of Electrokinetic Coupling

18.3.3. SP Postprocessor Calculations of Geobattery

18.4. FIELD OBSERVATIONS

18.4.1. SP Observations Near Wellheads at the Aneth Oil Field

18.4.2. SP Monitoring of Metallic Well Casing at CCUS Test Site

18.5. CONCLUDING REMARKS

ACKNOWLEDGMENTS

REFERENCES

19 Microseismic Monitoring, Event Location, and Focal Mechanisms at the Illinois Basin–Decatur Project, Decatur, Illinois, USA

ABSTRACT

19.1. INTRODUCTION

19.2. GEOLOGIC SETTING AND SEISMIC HISTORY. 19.2.1. State and Regional

19.2.2. Site Characterization

19.2.3. Seismic Surveys

19.3. MONITORING. 19.3.1. Formation Pressure Monitoring

19.3.2 Microseismicity Monitoring

19.4. SUBSURFACE ARRAY CALIBRATION. 19.4.1. Processing: Tool Orientation and Velocity Modeling

19.5. EVENT CHARACTERIZATION. 19.5.1. Event Location

19.5.2 Magnitude

19.5.3 Trends in Microseismicity. IBDP Preinjection Microseismicity

CO2 Induced Microseismicity: Other Sites

IBDP Microseismicity During Injection

Cluster Development

19.5.4. Fault Plane Solutions

19.6. MODEL INTEGRATION

19.6.1. Hydraulic Response and Reservoir Simulation

19.6.2. Coupled Hydromechanical Modeling

19.6.3. Microseismic Response Modeling

19.7. DISCUSSION AND SUMMARY

ACKNOWLEDGMENTS

REFERENCES

20 Associated Storage With Enhanced Oil Recovery: A Large‐Scale Carbon Capture, Utilization, and Storage Demonstration in Farnsworth, Texas, USA

ABSTRACT

20.1. INTRODUCTION

20.2. METHODS

20.3. SITE CHARACTERIZATION

20.4. MVA

20.5. SIMULATION AND MODELING

20.6. RISK ASSESSMENT

20.7. CO2 ACCOUNTING AND IMPACT TO OIL RECOVERY

20.8. CONCLUSIONS

ACKNOWLEDGMENTS

DISCLAIMER

REFERENCES

21 Testing Geophysical Methods for Assessing CO2 Migration at the SECARB Early Test, Cranfield, Mississippi, USA

ABSTRACT

21.1. INTRODUCTION. 21.1.1. Role of Monitoring at a CO2 Storage Site

21.1.2. Department of Energy's RCSP Program

21.1.3. Geologic Setting and Field Development at Cranfield

21.2. METHODS. 21.2.1. Tool Selection and Tool Deployment

21.3. RESULTS. 21.3.1. Characterization and Injection and Production Histories to Constrain Models

21.3.2. Response of Geophysical Tools

21.3.3. Time‐Lapse 3D Seismic

21.3.4. Vertical Seismic Profiling (VSP)

21.3.5. Time‐Lapse Cross‐Well Seismic

21.3.6. Continuous Active‐Source Seismic Monitoring (CASSM)

21.3.7. Electrical Resistance Tomography (ERT)

21.3.8. Borehole Gravity

21.3.9. Pulsed Neutron Logging

21.3.10. Time‐Lapse Wireline Sonic

21.3.11. Resistivity Logs

21.3.12. Fluid Density Logging

21.3.13. Airborne Conductivity and Magnetic Survey

21.3.14. Microseismic Monitoring

21.3.15. Downhole Fiber Optic

21.4. DISCUSSION

21.5. CONCLUSIONS

REFERENCES

22 Toward Quantitative CO2 Monitoring at Sleipner, Norway

ABSTRACT

22.1. INTRODUCTION

22.2. GEOLOGICAL BACKGROUND AND MODELS. 22.2.1. Geological Settings

22.2.2. Rock Physics Properties

22.3. METHODOLOGY

22.3.1. Full Waveform Inversion

22.3.2. Rock Physics Models

22.3.3. Rock Physics Inversion

22.4. SLEIPNER CASE STUDY

22.4.1. FWI Results

22.4.2. RPI Results. Baseline Estimates of Rock Frame Properties

Monitor Estimates of CO2 Saturation and Patchiness Exponent

22.5. DISCUSSION

22.6. CONCLUSIONS

ACKNOWLEDGMENTS

REFERENCES

23 Geophysical Monitoring of CO2 Injection at Ketzin, Germany

ABSTRACT

23.1. INTRODUCTION

23.2. KETZIN SITE GEOLOGY AND CHARACTERIZATION

23.3. CO2 INJECTION OPERATION

23.4. PETROPHYSICAL MEASUREMENTS

23.5. GEOPHYSICAL MONITORING

23.5.1. Seismic Surveying

4D Seismic Surveys

Seismic Impedance Inversion

Repeated 2D Seismic Surveys and VSP

Crosshole Seismic Surveys

Seismic Full‐Waveform Inversion

Permanent Geophone/Hydrophone Array

23.5.2. Electrical Resistivity Tomography (ERT)

Crosshole ERT

Surface‐Downhole ERT

23.6. DISCUSSION AND RECOMMENDATIONS

23.7. CONCLUSIONS

ACKNOWLEDGMENTS

REFERENCES

Note

24 Geophysical Monitoring Techniques: Current Status and Future Directions

ABSTRACT

24.1. SUMMARY OF ADVANTAGES AND LIMITATIONS

24.2. FUTURE RESEARCH DIRECTIONS

ACKNOWLEDGMENTS

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

217 Deep Earth: Physics and Chemistry of the Lower Mantle and Core Hidenori Terasaki and Rebecca A. Fischer ( Eds.)

218 Integrated Imaging of the Earth: Theory and Applications Max Moorkamp, Peter G. Lelievre, Niklas Linde, and Amir Khan (Eds.)

.....

268 Distributed Acoustic Sensing in Geophysics: Methods and Applications Yingping Li, Martin Karrenbach, and Jonathan B. Ajo‐Franklin (Eds.)

269 Congo Basin Hydrology, Climate, and Biogeochemistry: A Foundation for the Future Raphael M.Tshimanga, Guy D. Moukandi N’kaya, and Douglas Alsdorf (Eds.)

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Geophysical Monitoring for Geologic Carbon Storage
Подняться наверх