Flexible Supercapacitors
Реклама. ООО «ЛитРес», ИНН: 7719571260.
Оглавление
Группа авторов. Flexible Supercapacitors
Table of Contents
List of Illustrations
Guide
Pages
Flexible Supercapacitors. Materials and Applications
List of Contributors
Preface
1 Flexible Asymmetric Supercapacitors: Design, Progress, and Challenges
1.1 Introduction
1.2 Configurations of AFSCs Device
1.3 Progress of Flexible AFSCs. 1.3.1 Sandwich‐Type AFSCs
1.3.1.1 Carbon‐Based Anodes
1.3.1.2 Transition Metal Oxide Anodes
1.3.1.3 Transition Metal Nitride Anodes
1.3.1.4 Conductive Polymer Anodes
1.3.2 Fiber‐Type ASCs
1.3.2.1 Parallel‐Type Fiber AFSCs
1.3.2.2 Wrap‐Type Fiber AFSCs
1.3.2.3 Coaxial‐Helix‐Type Fiber AFSCs
1.3.2.4 Two‐Ply‐Yarn‐Type AFSCs
1.4 Summary
References
2 Stretchable Supercapacitors
2.1 Overview of Stretchable Supercapacitors
2.2 Fabrication of Stretchable Supercapacitor
2.2.1 Structures of Stretchable Fiber‐Shaped SCs
2.2.1.1 Fabrication of Stretchable Parallel SCs
2.2.1.2 Fabrication of Stretchable Twisted SCs
2.2.1.3 Fabrication of Stretchable Coaxial SCs
2.2.2 Planar Stretchable SCs
2.2.2.1 Fabrication of the Stretchable Planar SCs with Sandwich Structure
2.2.2.2 Omnidirectionally Stretchable Planar SCs
2.2.2.3 Stretchable On‐Chip Micro Supercapacitors (MSCs)
2.2.3 3D Stretchable SCs
2.2.3.1 Cellular Structure
2.2.3.2 Editable SCs
2.3 Multifunctional Supercapacitor
2.3.1 Compressible SCs
2.3.2 Self‐Healable SCs
2.3.3 Stretchable Integrated System
2.3.4 Perspective
References
3 Fiber‐shaped Supercapacitors
3.1 Introduction
3.2 Structure of FSSCs
3.3 Electrolyte
3.4 Electrode
3.4.1 Carbon‐Based Materials
3.4.2 Conducting Polymers
3.4.3 Metal‐Based Materials
3.4.4 Mxenes
3.4.5 Metal Organic Frameworks (MOFs)
3.4.6 Polyoxometalates (POMs)
3.4.7 Black Phosphorus (BP)
3.5 Electrode Design of FSSCs
3.5.1 Metal‐Fiber Supported Electrode
3.5.2 Carbon Materials Based Fiber Supported Electrode
3.5.2.1 Carbon Fiber
3.5.2.2 CNT Fiber
3.5.2.3 Graphene Fiber
3.5.3 Cotton Fiber Supported Electrode
3.6 Functionalized FSSCs
3.6.1 Self‐Healable FSSCs
3.6.2 Stretchable FSSCs
3.6.3 Electrochromic FSSCs
3.6.4 Shape‐Memory FSSCs
3.6.5 Photodetectable FSSCs
3.7 Conclusion
References
Note
4 Flexible Fiber‐shaped Supercapacitors: Fabrication, Design and Applications
4.1 Introduction to Fiber‐Shaped Supercapacitors
4.2 Emerging Techniques for the Fabrication of Fiber‐Shaped Electrodes
4.2.1 Wet Spinning Method
4.2.2 Spray/Cast‐Coating Method
4.2.3 Hydrothermal Method
4.3 Structures and Design/Configuration of Fiber‐Shaped Electrodes
4.3.1 Parallel‐Fiber Electrodes
4.3.2 Twisted‐Fiber Electrodes
4.3.3 Coaxial‐Fiber Electrodes
4.3.4 Rolled‐Fiber Electrodes
4.4 Materials for Fiber‐shaped Supercapacitors
4.4.1 Carbon‐Based Materials for FFSC
4.4.2 Metal Oxides and Their Composites‐Based Materials for FFSC
4.5 Electrolytes for Fiber‐Shaped Supercapacitors
4.6 Performance Evaluation Metrics for Fiber‐Shaped Supercapacitors
4.7 Applications
4.8 Conclusion and Future Prospectus
Acknowledgments
References
5 Flexible Supercapacitors Based on Ternary Metal Oxide (Sulfide, Selenide) Nanostructures
5.1 Introduction. 5.1.1 Background of Electrochemical Capacitors
5.1.2 Performance Evaluation of SCs
5.2 Ternary Metal Oxide
5.2.1 1D Ternary Metal Oxide Nanostructured Electrodes
5.2.2 2D Ternary Metal Oxide Nanostructured Electrodes
5.2.3 3D Ternary Oxide Electrodes
5.2.4 Core‐Shell Ternary Metal Oxide Composite Electrode. 5.2.4.1 Core‐Shell Nanoarrays
5.3 Metal Sulfide Electrodes
5.3.1 1D Metal Sulfide Electrodes
5.3.2 2D Metal Sulfide Electrodes
5.3.3 3D Metal Sulfide Electrodes
5.3.4 Metal Sulfide Composite Electrodes
5.4 Metal Selenide Electrodes
5.4.1 1D Metal Selenide
5.4.2 2D Metal Selenide Electrodes
5.4.3 3D Metal Selenide Electrodes
5.5 Fiber‐Shaped SCs
5.6 Summary and Perspectives
Declaration of Competing Interest
Acknowledgments
References
6 Transition Metal Oxide Based Electrode Materials for Supercapacitors
6.1 Introduction
6.2 Co3O4 Electrode Materials
6.3 NiO Electrode Materials
6.4 Fe2O3 Electrode Materials
6.5 MnO2 Electrode Materials
6.6 V2O5 Electrode Materials
References
7 Three‐Dimensional Nanoarrays for Flexible Supercapacitors
List of Abbreviations
7.1 Introduction
7.2 Fabrication of 3D Nanoarrays. 7.2.1 Selection of Substrates
7.2.1.1 Metal Foils
7.2.1.2 Polymeric Films
7.2.1.3 Textile‐Like Materials
7.2.2 Synthesis Methods of Flexible 3D Nanoarrays
7.2.2.1 Flexible 3D Nanoarray Electrodes Fabricated by Hydrothermal Methods
7.2.2.2 Flexible 3D Nanoarray Electrodes Fabricated by CVD/Sputtering Methods
7.2.2.3 Flexible 3D Nanoarray Electrodes Fabricated by Electrochemical Deposition Methods
7.3 Typical Structural Engineering of 3D Nanoarrays for Flexible Supercapacitors
7.3.1 Basic 3D Nanoarrays for Flexible Supercapacitors
7.3.1.1 Flexible Electrical Double‐Layer Capacitors
7.3.1.2 Flexible Pseudocapacitors
7.3.2 Hybrid 3D Nanoarrays for Flexible Supercapacitors
7.3.2.1 Doping of Heteroatoms and Anchoring of Functional Groups
7.3.2.2 Pre‐Intercalation of Heteroatoms
7.3.2.3 Coaxial Branched and Core‐Shell 3D Hybrid Nanostructures
7.4 Evaluation of Flexible Supercapacitors. 7.4.1 Bending Deformation
7.4.2 Stretching Deformation
7.4.3 Twisting Deformation
7.5 Conclusion
Acknowledgments
References
8 Metal Oxides Nanoarray Electrodes for Flexible Supercapacitors
8.1 Introduction
8.2 Synthesis Techniques of Metal Oxide Nanoarrays
8.2.1 Solution‐based Route
8.2.2 Electrodeposition Growth
8.2.3 Chemical Vapor Deposition
8.3 The Flexible Support Substrate for Loading Nanoarrays
8.3.1 3D Porous Graphene Foam
8.3.2 Carbon Cloth Current Collectors
8.3.3 Metal Conductive Substrates
8.4 The Geometry of Nanostructured Arrays
8.4.1 The 1D Nanostructured Arrays
8.4.2 The 2D Nanostructured Arrays
8.4.3 The Integration of 1D@2D Nanoarrays
8.5 Conclusions and Prospects
References
9 Printed Flexible Supercapacitors
List of Abbreviations
9.1 Overview of Printed Flexible Supercapacitor
9.2 Devices Structure of Printed SCs
9.3 Printable Materials for SCs
9.3.1 Electrodes Materials
9.3.1.1 Carbon‐Based Materials
9.3.1.2 Metal Oxides
9.3.1.3 2D Transition Metal Carbides, Nitrides, and Carbonitrides (MXenes)
9.3.1.4 Metal‐Organic Frameworks (MOFs)
9.3.2 Electrolytes
9.3.2.1 Aqueous Gel Polymer Electrolytes
9.3.2.2 Organic Gel Polymer Electrolytes
9.3.2.3 Ionic Liquid‐Based Gel Polymer Electrolytes
9.3.2.4 Redox‐Active Gel Electrolytes
9.3.3 Flexible Substrates
9.3.3.1 Metal Substrates
9.3.3.2 Synthetic Polymer‐Based Substrates
9.4 Fabrication of Flexible SCs Using Various Printing Methods. 9.4.1 Inkjet Printing
9.4.2 Screen Printing
9.4.3 Transfer Printing
9.4.4 3D Printing
9.5 Printed Integrated System
9.6 Perspective
Acknowledgments
References
10 Printing Flexible On‐chip Micro‐Supercapacitors
10.1 Introduction
10.2 Printable Materials for On‐chip MSCs
10.2.1 Printable Electrode Materials
10.2.2 Printable Current Collector
10.2.3 Printable Electrolyte
10.3 Printing Techniques. 10.3.1 Inkjet Printing
10.3.2 Spray Printing
10.3.3 Screen Printing
10.3.4 3D Printing
10.4 Summary
References
11 Recent Advances of Flexible Micro‐Supercapacitors
11.1 Introduction
11.2 General Features of Flexible MSCs
11.3 Active Materials of Flexible MSCs
11.3.1 Graphene‐based Materials
11.3.2 CNT‐based Materials
11.3.3 Other Carbon‐based Materials
11.3.4 Transition Metal Oxides and Hydroxides
11.3.5 MXenes
11.3.6 Conductive Polymer
11.4 Integration of Flexible MSCs
11.4.1 Flexible Self‐charging MSCs
11.4.2 Flexible Self‐powering MSCs
11.5 Flexible Smart MSCs
11.5.1 Flexible Self‐healing MSCs
11.5.2 Flexible Electrochromic MSCs
11.5.3 Flexible Photodetectable MSCs
11.5.4 Flexible Thermoreversible Self‐protecting MSCs
11.6 Summary and Prospects
References
Note
Index. a
b
c
d
e
f
g
h
i
k
l
m
n
o
p
r
s
t
v
w
z
WILEY END USER LICENSE AGREEMENT
Отрывок из книги
Edited by
Guozhen Shen
.....
Wenjie Mai Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics Jinan University Guangzhou, 510632, PR China
Ting Meng Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics Northwestern Polytechnical University Xi'an, 710072, P. R. China
.....