Flexible Supercapacitors

Flexible Supercapacitors
Автор книги: id книги: 2295300     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 19609,3 руб.     (213,66$) Читать книгу Купить и скачать книгу Электронная книга Жанр: Физика Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119506157 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

FLEXIBLE SUPERCAPACITORS Comprehensive coverage of the latest advancements in flexible supercapacitors In Flexible Supercapacitors: Materials and Applications , a team of distinguished researchers deliver a comprehensive and insightful exploration of the foundational principles and real-world applications of flexible supercapacitors. This edited volume includes contributions from leading scientists working in the field of flexible supercapacitors. The book systematically summarizes the most recent research in the area, and covers fundamental concepts of electrode materials and devices, including on-chip microsupercapacitors and fiber supercapacitors. The latest progress and advancements in stretchable supercapacitors and healable supercapacitors are also discussed, as are problems and challenges commonly encountered in the development of flexible supercapacitors. The book concludes with suggestions and fresh perspectives on future research in this rapidly developing field. Flexible Supercapacitors: Materials and Applications also offers: A thorough introduction to the fundamentals of supercapacitors, including their materials and devices Comprehensive explorations of flexible fiber supercapacitors and two-dimensional materials for flexible supercapacitors In-depth examinations of flexible supercapacitors with metal oxides-based electrodes and flexible on-chip microsupercapacitors Practical discussions of stretchable and healable supercapacitors, as well as patterned nanostructured electrodes Perfect for researchers in the fields of materials science, physics, and electrical engineering, Flexible Supercapacitors: Materials and Applications is also an ideal reference for developers interested in supercapacitor design, materials, and devices.

Оглавление

Группа авторов. Flexible Supercapacitors

Table of Contents

List of Illustrations

Guide

Pages

Flexible Supercapacitors. Materials and Applications

List of Contributors

Preface

1 Flexible Asymmetric Supercapacitors: Design, Progress, and Challenges

1.1 Introduction

1.2 Configurations of AFSCs Device

1.3 Progress of Flexible AFSCs. 1.3.1 Sandwich‐Type AFSCs

1.3.1.1 Carbon‐Based Anodes

1.3.1.2 Transition Metal Oxide Anodes

1.3.1.3 Transition Metal Nitride Anodes

1.3.1.4 Conductive Polymer Anodes

1.3.2 Fiber‐Type ASCs

1.3.2.1 Parallel‐Type Fiber AFSCs

1.3.2.2 Wrap‐Type Fiber AFSCs

1.3.2.3 Coaxial‐Helix‐Type Fiber AFSCs

1.3.2.4 Two‐Ply‐Yarn‐Type AFSCs

1.4 Summary

References

2 Stretchable Supercapacitors

2.1 Overview of Stretchable Supercapacitors

2.2 Fabrication of Stretchable Supercapacitor

2.2.1 Structures of Stretchable Fiber‐Shaped SCs

2.2.1.1 Fabrication of Stretchable Parallel SCs

2.2.1.2 Fabrication of Stretchable Twisted SCs

2.2.1.3 Fabrication of Stretchable Coaxial SCs

2.2.2 Planar Stretchable SCs

2.2.2.1 Fabrication of the Stretchable Planar SCs with Sandwich Structure

2.2.2.2 Omnidirectionally Stretchable Planar SCs

2.2.2.3 Stretchable On‐Chip Micro Supercapacitors (MSCs)

2.2.3 3D Stretchable SCs

2.2.3.1 Cellular Structure

2.2.3.2 Editable SCs

2.3 Multifunctional Supercapacitor

2.3.1 Compressible SCs

2.3.2 Self‐Healable SCs

2.3.3 Stretchable Integrated System

2.3.4 Perspective

References

3 Fiber‐shaped Supercapacitors

3.1 Introduction

3.2 Structure of FSSCs

3.3 Electrolyte

3.4 Electrode

3.4.1 Carbon‐Based Materials

3.4.2 Conducting Polymers

3.4.3 Metal‐Based Materials

3.4.4 Mxenes

3.4.5 Metal Organic Frameworks (MOFs)

3.4.6 Polyoxometalates (POMs)

3.4.7 Black Phosphorus (BP)

3.5 Electrode Design of FSSCs

3.5.1 Metal‐Fiber Supported Electrode

3.5.2 Carbon Materials Based Fiber Supported Electrode

3.5.2.1 Carbon Fiber

3.5.2.2 CNT Fiber

3.5.2.3 Graphene Fiber

3.5.3 Cotton Fiber Supported Electrode

3.6 Functionalized FSSCs

3.6.1 Self‐Healable FSSCs

3.6.2 Stretchable FSSCs

3.6.3 Electrochromic FSSCs

3.6.4 Shape‐Memory FSSCs

3.6.5 Photodetectable FSSCs

3.7 Conclusion

References

Note

4 Flexible Fiber‐shaped Supercapacitors: Fabrication, Design and Applications

4.1 Introduction to Fiber‐Shaped Supercapacitors

4.2 Emerging Techniques for the Fabrication of Fiber‐Shaped Electrodes

4.2.1 Wet Spinning Method

4.2.2 Spray/Cast‐Coating Method

4.2.3 Hydrothermal Method

4.3 Structures and Design/Configuration of Fiber‐Shaped Electrodes

4.3.1 Parallel‐Fiber Electrodes

4.3.2 Twisted‐Fiber Electrodes

4.3.3 Coaxial‐Fiber Electrodes

4.3.4 Rolled‐Fiber Electrodes

4.4 Materials for Fiber‐shaped Supercapacitors

4.4.1 Carbon‐Based Materials for FFSC

4.4.2 Metal Oxides and Their Composites‐Based Materials for FFSC

4.5 Electrolytes for Fiber‐Shaped Supercapacitors

4.6 Performance Evaluation Metrics for Fiber‐Shaped Supercapacitors

4.7 Applications

4.8 Conclusion and Future Prospectus

Acknowledgments

References

5 Flexible Supercapacitors Based on Ternary Metal Oxide (Sulfide, Selenide) Nanostructures

5.1 Introduction. 5.1.1 Background of Electrochemical Capacitors

5.1.2 Performance Evaluation of SCs

5.2 Ternary Metal Oxide

5.2.1 1D Ternary Metal Oxide Nanostructured Electrodes

5.2.2 2D Ternary Metal Oxide Nanostructured Electrodes

5.2.3 3D Ternary Oxide Electrodes

5.2.4 Core‐Shell Ternary Metal Oxide Composite Electrode. 5.2.4.1 Core‐Shell Nanoarrays

5.3 Metal Sulfide Electrodes

5.3.1 1D Metal Sulfide Electrodes

5.3.2 2D Metal Sulfide Electrodes

5.3.3 3D Metal Sulfide Electrodes

5.3.4 Metal Sulfide Composite Electrodes

5.4 Metal Selenide Electrodes

5.4.1 1D Metal Selenide

5.4.2 2D Metal Selenide Electrodes

5.4.3 3D Metal Selenide Electrodes

5.5 Fiber‐Shaped SCs

5.6 Summary and Perspectives

Declaration of Competing Interest

Acknowledgments

References

6 Transition Metal Oxide Based Electrode Materials for Supercapacitors

6.1 Introduction

6.2 Co3O4 Electrode Materials

6.3 NiO Electrode Materials

6.4 Fe2O3 Electrode Materials

6.5 MnO2 Electrode Materials

6.6 V2O5 Electrode Materials

References

7 Three‐Dimensional Nanoarrays for Flexible Supercapacitors

List of Abbreviations

7.1 Introduction

7.2 Fabrication of 3D Nanoarrays. 7.2.1 Selection of Substrates

7.2.1.1 Metal Foils

7.2.1.2 Polymeric Films

7.2.1.3 Textile‐Like Materials

7.2.2 Synthesis Methods of Flexible 3D Nanoarrays

7.2.2.1 Flexible 3D Nanoarray Electrodes Fabricated by Hydrothermal Methods

7.2.2.2 Flexible 3D Nanoarray Electrodes Fabricated by CVD/Sputtering Methods

7.2.2.3 Flexible 3D Nanoarray Electrodes Fabricated by Electrochemical Deposition Methods

7.3 Typical Structural Engineering of 3D Nanoarrays for Flexible Supercapacitors

7.3.1 Basic 3D Nanoarrays for Flexible Supercapacitors

7.3.1.1 Flexible Electrical Double‐Layer Capacitors

7.3.1.2 Flexible Pseudocapacitors

7.3.2 Hybrid 3D Nanoarrays for Flexible Supercapacitors

7.3.2.1 Doping of Heteroatoms and Anchoring of Functional Groups

7.3.2.2 Pre‐Intercalation of Heteroatoms

7.3.2.3 Coaxial Branched and Core‐Shell 3D Hybrid Nanostructures

7.4 Evaluation of Flexible Supercapacitors. 7.4.1 Bending Deformation

7.4.2 Stretching Deformation

7.4.3 Twisting Deformation

7.5 Conclusion

Acknowledgments

References

8 Metal Oxides Nanoarray Electrodes for Flexible Supercapacitors

8.1 Introduction

8.2 Synthesis Techniques of Metal Oxide Nanoarrays

8.2.1 Solution‐based Route

8.2.2 Electrodeposition Growth

8.2.3 Chemical Vapor Deposition

8.3 The Flexible Support Substrate for Loading Nanoarrays

8.3.1 3D Porous Graphene Foam

8.3.2 Carbon Cloth Current Collectors

8.3.3 Metal Conductive Substrates

8.4 The Geometry of Nanostructured Arrays

8.4.1 The 1D Nanostructured Arrays

8.4.2 The 2D Nanostructured Arrays

8.4.3 The Integration of 1D@2D Nanoarrays

8.5 Conclusions and Prospects

References

9 Printed Flexible Supercapacitors

List of Abbreviations

9.1 Overview of Printed Flexible Supercapacitor

9.2 Devices Structure of Printed SCs

9.3 Printable Materials for SCs

9.3.1 Electrodes Materials

9.3.1.1 Carbon‐Based Materials

9.3.1.2 Metal Oxides

9.3.1.3 2D Transition Metal Carbides, Nitrides, and Carbonitrides (MXenes)

9.3.1.4 Metal‐Organic Frameworks (MOFs)

9.3.2 Electrolytes

9.3.2.1 Aqueous Gel Polymer Electrolytes

9.3.2.2 Organic Gel Polymer Electrolytes

9.3.2.3 Ionic Liquid‐Based Gel Polymer Electrolytes

9.3.2.4 Redox‐Active Gel Electrolytes

9.3.3 Flexible Substrates

9.3.3.1 Metal Substrates

9.3.3.2 Synthetic Polymer‐Based Substrates

9.4 Fabrication of Flexible SCs Using Various Printing Methods. 9.4.1 Inkjet Printing

9.4.2 Screen Printing

9.4.3 Transfer Printing

9.4.4 3D Printing

9.5 Printed Integrated System

9.6 Perspective

Acknowledgments

References

10 Printing Flexible On‐chip Micro‐Supercapacitors

10.1 Introduction

10.2 Printable Materials for On‐chip MSCs

10.2.1 Printable Electrode Materials

10.2.2 Printable Current Collector

10.2.3 Printable Electrolyte

10.3 Printing Techniques. 10.3.1 Inkjet Printing

10.3.2 Spray Printing

10.3.3 Screen Printing

10.3.4 3D Printing

10.4 Summary

References

11 Recent Advances of Flexible Micro‐Supercapacitors

11.1 Introduction

11.2 General Features of Flexible MSCs

11.3 Active Materials of Flexible MSCs

11.3.1 Graphene‐based Materials

11.3.2 CNT‐based Materials

11.3.3 Other Carbon‐based Materials

11.3.4 Transition Metal Oxides and Hydroxides

11.3.5 MXenes

11.3.6 Conductive Polymer

11.4 Integration of Flexible MSCs

11.4.1 Flexible Self‐charging MSCs

11.4.2 Flexible Self‐powering MSCs

11.5 Flexible Smart MSCs

11.5.1 Flexible Self‐healing MSCs

11.5.2 Flexible Electrochromic MSCs

11.5.3 Flexible Photodetectable MSCs

11.5.4 Flexible Thermoreversible Self‐protecting MSCs

11.6 Summary and Prospects

References

Note

Index. a

b

c

d

e

f

g

h

i

k

l

m

n

o

p

r

s

t

v

w

z

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Edited by

Guozhen Shen

.....

Wenjie Mai Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics Jinan University Guangzhou, 510632, PR China

Ting Meng Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics Northwestern Polytechnical University Xi'an, 710072, P. R. China

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Flexible Supercapacitors
Подняться наверх