Жанры
Авторы
Контакты
О сайте
Книжные новинки
Популярные книги
Найти
Главная
Авторы
Группа авторов
Bioinformatics and Medical Applications
Читать книгу Bioinformatics and Medical Applications - Группа авторов - Страница 1
Оглавление
Предыдущая
Следующая
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
...
86
Оглавление
Купить и скачать книгу
Вернуться на страницу книги Bioinformatics and Medical Applications
Оглавление
Страница 1
Table of Contents
List of Illustrations
List of Tables
Guide
Pages
Страница 7
Страница 8
Страница 9
Страница 10
1
Probabilistic Optimization of Machine Learning Algorithms for Heart Disease Prediction
Abstract
1.1
Introduction
1.1.1
Scope and Motivation
1.2
Literature Review
1.2.1
Comparative Analysis
1.2.2
Survey Analysis
1.3
Tools and Techniques
1.3.1
Description of Dataset
1.3.2
Machine Learning Algorithm
1.3.3
Decision Tree
1.3.4
Random Forest
1.3.5
Naive Bayes Algorithm
1.3.6
K Means Algorithm
1.3.7
Ensemble Method
1.3.7.1
Bagging
1.3.7.2
Boosting
1.3.7.3
Stacking
1.3.7.4
Majority Vote
1.4
Proposed Method
1.4.1
Experiment and Analysis
1.4.2
Method
1.5
Conclusion
References
Страница 34
2
Cancerous Cells Detection in Lung Organs of Human Body: IoT-Based Healthcare 4.0 Approach
Abstract
2.1
Introduction
2.1.1
Motivation of the Study
2.1.1.1
Problem Statements
2.1.1.2
Authors’ Contributions
2.1.1.3
Research Manuscript Organization
2.1.1.4
Definitions
2.1.2
Computer-Aided Diagnosis System (CADe or CADx)
2.1.3
Sensors for the Internet of Things
2.1.4
Wireless and Wearable Sensors for Health Informatics
2.1.5
Remote Human’s Health and Activity Monitoring
2.1.6
Decision-Making Systems for Sensor Data
2.1.7
Artificial Intelligence and Machine Learning for Health Informatics
2.1.8
Health Sensor Data Management
2.1.9
Multimodal Data Fusion for Healthcare
2.1.10
Heterogeneous Data Fusion and Context-Aware Systems: A Context-Aware Data Fusion Approach for Health-IoT
2.2
Literature Review
2.3
Proposed Systems
2.3.1
Framework or Architecture of the Work
2.3.2
Model Steps and Parameters
2.3.3
Discussions
2.4
Experimental Results and Analysis
2.4.1
Tissue Characterization and Risk Stratification
2.4.2
Samples of Cancer Data and Analysis
2.5
Novelties
2.6
Future Scope, Limitations, and Possible Applications
2.7
Recommendations and Consideration
2.8
Conclusions
References
Страница 65
3
Computational Predictors of the Predominant Protein Function: SARS-CoV-2 Case
Abstract
3.1
Introduction
3.2
Human Coronavirus Types
3.3
The SARS-CoV-2 Pandemic Impact
3.3.1
RNA Virus vs DNA Virus
3.3.2
The Coronaviridae Family
3.3.3
The SARS-CoV-2 Structural Proteins
3.3.4
Protein Representations
3.4
Computational Predictors
3.4.1
Supervised Algorithms
3.4.2
Non-Supervised Algorithms
3.5
Polarity Index Method®
3.5.1
The PIM® Profile
3.5.2
Advantages
3.5.3
Disadvantages
3.5.4
SARS-CoV-2 Recognition Using PIM® Profile
3.6
Future Implications
3.7
Acknowledgments
References
{buyButton}
Подняться наверх