Handbook of Aggregation-Induced Emission, Volume 2

Handbook of Aggregation-Induced Emission, Volume 2
Автор книги: id книги: 2313317     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 22976,1 руб.     (216,37$) Читать книгу Купить и скачать книгу Электронная книга Жанр: Химия Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119642961 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

The second volume of the ultimate reference on the science and applications of aggregation-induced emission  The Handbook of Aggregation-Induced Emission  explores foundational and advanced topics in aggregation-induced emission, as well as cutting-edge developments in the field, celebrating twenty years of progress and achievement in this important and interdisciplinary field. The three volumes combine to offer readers a comprehensive and insightful interpretation accessible to both new and experienced researchers working on aggregation-induced emission.  In  Volume 2: Typical AIEgens Design , the editors address the design and synthesis of typical AIEgens that have made significant contributions to aggregation-induced emission research. Recent advances in the development of aggregation-induced emission systems are discussed and the book covers novel aggregation-induced emission systems in small molecule organogels, polymersomes, metal-organic coordination complexes and metal nanoclusters. Readers will also discover:  A thorough introduction to the synthesis and applications of tetraphenylpyrazine-based AIEgens, AIEgens based on 9,10-distyrylanthracene , and the Salicylaldehyde Schiff base Practical discussions of aggregation-induced emission from the sixth main group and fluorescence detection of dynamic aggregation processes using AIEgens Coverage of cyclic triimidazole derivatives and the synthesis of multi-phenyl-substituted pyrrole based materials and their applications Perfect for academic researchers working on aggregation-induced emission, this set of volumes is also ideal for professionals and students in the fields of photophysics, photochemistry, materials science, optoelectronic materials, synthetic organic chemistry, macromolecular chemistry, polymer science, and biological sciences.

Оглавление

Группа авторов. Handbook of Aggregation-Induced Emission, Volume 2

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Handbook of Aggregation‐Induced Emission. Volume 2 Typical AIEgens Design

List of Contributors

Preface to Handbook of Aggregation‐Induced Emission

Preface to Volume 2: Typical AIEgens Design

1 Tetraphenylpyrazine‐based AIEgens: Synthesis and Applications

1.1 Introduction

1.2 Synthesis of TPP‐based AIEgens. 1.2.1 Cyclization Reaction

1.2.2 Suzuki–Miyaura Reaction

1.3 Functionalities of TPP‐based AIEgens

1.3.1 Organic Light‐emitting Diodes

1.3.2 Fluorescent Sensors

1.3.3 Chiral Cage for Self‐assembly to Achieve White‐light Emission

1.3.4 Metal–organic Framework

1.4 Conclusion

References

2 AIEgens Based on 9,10‐Distyrylanthracene (DSA): From Small Molecules to Macromolecules

2.1 Introduction

2.2 Application of AIE Luminogens Based on 9,10‐Distyrylanthracene. 2.2.1 Smart Materials with Stimulus Response

2.2.1.1 Piezofluorochromic Materials

2.2.1.2 Photochromic Materials

2.2.1.3 Thermochromic Materials

2.2.1.4 Acidichromic Materials

2.2.1.5 Multistimuli‐responsive Materials

2.2.2 High Solid‐state Luminescent Materials

2.2.3 Fluorescent Materials for Bioimaging

2.2.4 Fluorescent Probes for Chemical and Biological Sensing

2.2.4.1 Fluorescent Probes for Chemical Sensing

2.2.4.2 Fluorescent Probes for Biological Sensing

2.3 Conclusions and Outlook

Acknowledgments

References

3 Typical AIEgens Design: Salicylaldehyde Schiff Base

3.1 Introduction. 3.1.1 AIE and ESIPT of Salicylaldehyde Schiff Base

3.1.2 Universal Design of SSB‐based AIEgens

3.2 Fluorescent Probes. 3.2.1 Metal Ion Detection and Imaging

3.2.2 Biologically and Environmentally Related Molecular Detection and Imaging

3.2.3 Ratiometric pH Probes

3.2.4 Bioimaging

3.3 Fluorescent Materials. 3.3.1 Solid Fluorescence Emitting and Stimuli‐Responsive Materials

3.3.2 Nanoparticles

3.4 Summary and Perspectives

References

4 Diaminodicyanoquinodimethanes: Fluorescence Emission Enhancement in Aggregates and Solids

4.1 Introduction. 4.1.1 Molecular Materials

4.1.2 ‘Push–Pull’ Molecules

4.1.3 Diaminodicyanoquinodimethanes

4.2 Nonlinear Optical Materials based on DADQs. 4.2.1 Molecular Hyperpolarizability

4.2.2 SHG Materials

4.2.3 Structure–Property Correlations

4.3 Enhanced Fluorescence in Aggregates and Solids Based on DADQs

4.3.1 Remote Functionalized Systems

4.3.2 Color Tuning, Nanocrystals, and Colloids

4.3.3 Ultrathin Films

4.3.4 New Directions

4.4 Mechanistic Insights into the Enhanced Fluorescence. 4.4.1 Relevance of Intramolecular Effects

4.4.2 Role of Intermolecular Effects

4.5 Impact of Crystallinity on the Fluorescence Response

4.5.1 Amorphous‐to‐Crystalline Transformation: Fluorescence Switching and Tuning

4.5.2 Reversible Amorphous–Crystalline Transformations: Phase Change Materials

4.5.3 Impact of External Stimuli

4.6 Emergent and Potential Applications of DADQs. 4.6.1 Electroluminescence and Nonlinear Optics

4.6.2 Bioimaging

4.6.3 Photoelectrochemical and Photobioelectrochemical Applications

4.6.4 Memory Devices

4.7 Concluding Remarks

Acknowledgements

References

5 Aggregation‐induced Emission from the Sixth Main Group

5.1 Introduction

5.2 Oxygen

5.2.1 Oxygen‐Containing Heterocycles

5.2.2 Oxo‐ether Containing AIE‐Active Luminogens

5.3 Sulfur

5.3.1 Luminogens Based on Thiophenes

5.3.2 Thioethers with Aggregation‐Induced Emission Properties

5.3.3 Emissive Sulfones

5.4 Selenium and Tellurium

5.4.1 Selenium‐Containing Luminophores

5.4.2 Tellurium‐Containing Luminophores

5.5 Conclusion

Acknowledgment

References

6 Fluorescence Detection of Dynamic Aggregation Processes Using AIEgens: Hexaphenylsilole and Cyanostilbene

6.1 Introduction

6.2 Selective Detection of Phase Transformation During Evaporative Crystallization of Hexaphenylsilole

6.3 Observation of the Initial Stage of Organic Crystal Formation During Solvent Evaporation Using a Cyanostilbene Derivative

6.4 Chemometrix Analysis of the Aggregated Structure of Cyanostilbene in a Reprecipitation Solution Using Fluorescence Excitation Spectroscopy

6.5 UV‐triggered Fluorescence Enhancement of a Dicyanostilbene Derivative Film Cast from an Ethanol Solution

6.6 Concluding Remarks

Acknowledgments

References

7 Cyclic Triimidazole Derivatives: An Intriguing Family of Multifaceted Emitters

7.1 Introduction

7.2 The Protoype: Cyclic Triimidazole

7.3 Halogenated Derivatives of Cyclic Triimidazole

7.3.1 Bromine Derivatives

7.3.2 Iodine Derivatives

7.4 Organic Derivatives

7.4.1 2‐Fluoropyridine Derivative

7.4.2 Tribenzoimidazole Derivative

7.5 Hybrid Inorganic/Organic Derivatives

7.6 Conclusions

Acknowledgments

References

8 Synthesis of Multi‐phenyl‐substituted Pyrrole (MPP)‐based AIE Materials and Their Applications

8.1 Introduction

8.2 Modular Approach: Systematic Synthesis of MPPs

8.3 Structures and Photophysical Properties

8.4 Applications of MPP‐based Materials. 8.4.1 Chemical/Biological Sensing

8.4.2 Multi‐stimulus Response Materials

8.4.3 Optoelectronic Systems

8.4.4 Biological Application

8.5 Conclusion and Outlook

References

9 Development of a New Class of AIEgens: Tetraarylpyrrolo [3,2‐b] Pyrroles (TAPPs)

9.1 Introduction

9.2 The Accidental Discovery of TAPP

9.3 Synthesis of TAPP

9.4 Possible Mechanism of TAPP Synthesis

9.5 Reactivity of TAPP

9.6 π‐Expansion of TAPP

9.7 π‐Expanded 1,4‐dihydropyrrolo[3,2‐b]pyrrole

9.8 Photophysical Optical Properties of TAPP

9.9 Conclusion and Outlook

Acknowledgments

References

10 Small Molecule Organogels from AIE Active α‐Cyanostilbenes

10.1 Introduction

10.2 Organogels with Trifluoromethyl Substitution

10.3 Organogels with Chiral Units/Chiral Hosts

10.4 Stimuli–Responsive Organogels

10.5 Organogels with Sensing Applications

10.6 Concluding Remarks

Acknowledgments

References

11 Stimuli‐responsive Pure Organic Luminescent Supramolecules

11.1 Introduction

11.2 Pure Organic Fluorescent Supramolecules. 11.2.1 Pure Organic Fluorescent Supramolecules Containing Macrocycles

11.2.1.1 Pure Organic Fluorescent Supramolecules Containing Cyclodextrins

11.2.1.2 Pure Organic Fluorescent Supramolecules Containing Calixarenes

11.2.1.3 Pure Organic Fluorescent Supramolecules Containing Cucurbiturils

11.2.1.4 Pure Organic Fluorescent Supramolecules Containing Pillararene

11.2.1.5 Pure Organic Fluorescent Supramolecules Containing Crown Ether

11.2.2 Pure Organic Fluorescent Supramolecules Without Macrocycles

11.3 Pure Organic Phosphorescent Supramolecules. 11.3.1 Pure Organic Phosphorescent Supramolecules Based on Macrocyclic Molecules

11.3.1.1 Pure Organic Phosphorescent Supramolecules Containing Cyclodextrin

11.3.1.2 Pure Organic Phosphorescent Supramolecules Containing Cucurbiturils

11.3.1.3 Pure Organic Phosphorescent Supramolecules Containing Calixarenes

11.3.1.4 Pure Organic Phosphorescent Supramolecules Containing Crown Ether

11.3.2 Pure Organic Phosphorescent Supramolecules Without Macrocyclic Molecules. 11.3.2.1 Pure Organic Supramolecular Phosphorescence System With Doping‐Based Host–Guest Interaction

11.3.2.2 Other Pure Organic Phosphorescent Supramolecules

11.4 Conclusions

Acknowledgments

References

12 AIE Fluorescent Polymersomes

12.1 Introduction

12.2 Structural Consideration of Block Copolymers for Polymersome Formation

12.3 Methods of Polymersome Preparation

12.4 Techniques of Polymersome Characterization

12.5 AIE Polymersomes Based on PEG‐b‐POSS

12.6 AIE Polymersomes Based on Amphiphilic Polypeptoids

12.7 AIE Polymersomes Based on PEG‐b‐Polycarbonate

12.8 AIE Polymersomes Based on Amphiphilic Polynorbornene

12.9 AIE Polymersomes Based on Amphiphilic Block Copolymers by RAFT Polymerization

12.10 Summary and Perspectives

References

13 Designs for AIE Molecules and Functional Luminescent Materials Based on Boron‐containing Element‐blocks

13.1 Introduction. 13.1.1 Generals of Commodity Luminescent Boron Complexes

13.1.2 Trends in the Development of Advanced Organic Electronic Devices

13.1.3 Strategies for Obtaining Solid‐state Luminescence and Stimuli‐responsiveness

13.1.4 New Ideas for Material Design Based on “Element‐blocks”

13.2 Solid‐state Luminescence and Luminochromism of o‐Carboranes. 13.2.1 Emission Mechanism of Aryl‐modified o‐Carboranes

13.2.2 AIE Behavior of o‐Carborane Materials

13.2.3 Formation of Twisted Intramolecular Charge Transfer (TICT) State in the Crystalline State of o‐Carboranes

13.2.4 Thermochromic Luminescence of o‐Carboranes

13.2.5 Intense Solid‐state Luminescent Molecules

13.2.6 Solid‐state Excimer Emission

13.3 Boron Complexes with β‐Ketimine and β‐Diketimine Ligands. 13.3.1 Generals of Boron Ketiminates and Diketiminates

13.3.2 Unique Solid‐state Luminescent Properties of Conjugated Boron Complexes

13.3.3 Thermally Stable Mechanochromic Luminescent Hybrid with the Siloxane Unit

13.3.4 Luminescent Properties of β‐Diketiminate Complexes

13.3.5 AIE‐active Conjugated Polymers

13.3.6 Design for Film‐type Sensors

13.3.7 Sensitive Luminochromic Sensors with Gallium Complexes

13.4 Rational Design for AIE‐active Molecules Based on “Flexible” Boron Complexes. 13.4.1 Concept for Rational Design

13.4.2 Ring‐fused or Nonring‐fused Molecules

13.4.3 Thermosalient‐active Molecules

13.4.4 Solid‐state Luminescent π‐Conjugated Polymer

13.5 Conclusion

References

14 Aggregation‐induced Emission (AIE) Active Metal–Organic Coordination Complexes

14.1 Introduction

14.2 Conception and Design Strategy

14.3 AIE Active Metallacycles

14.3.1 AIE Active Simple Metallacycles

14.3.2 AIE Active Fused Metallacycles

14.3.3 AIE Active Metallacycle Polymers

14.4 AIE Active Metallacages

14.5 AIE Active Metal–organic Frameworks (MOFs)

14.6 Summary and Outlook

Acknowledgments

References

15 AIE‐type Luminescent Metal Nanoclusters

15.1 Introduction

15.2 In the “Single‐cluster” Scenario. 15.2.1 AIE‐type Luminescent Metal NCs

15.2.2 Atomically Precise AIE‐type Luminescent Metal NCs

15.2.3 Approaches to Luminescence Enhancement of Metal NCs in the Scheme of AIE

15.2.3.1 Surface Engineering. 15.2.3.1.1 Ligands Rigidifying

15.2.3.1.2 Ligands Optimizing

15.2.3.2 Roles of the Core

15.3 Beyond the “Single‐cluster” Scenario

15.3.1 Poor‐solvent‐induced AIE of Metal NCs

15.3.2 Ion‐induced AIE of Metal NCs

15.3.3 Supramolecular Interactions Induced AIE of Metal NCs

15.3.4 Spatial Confinement‐induced AIE of Metal NCs

15.4 Application of the AIE‐type Luminescent Metal NCs

15.4.1 Chemical Sensing

15.4.2 Biological Applications

15.4.3 Photosensitizer

15.4.4 Light‐emitting Diodes (LEDs)

15.5 Conclusion and Outlook

References

16 Aggregation‐induced Emission in Coinage Metal Clusters

16.1 Introduction

16.2 AIE‐active Gold Cluster

16.3 AIE‐active Silver Cluster

16.4 AIE‐active Copper Cluster

16.5 AIE‐active Bimetallic Cluster

16.6 Conclusions

References

17 Activated Alkynes in Metal‐free Bioconjugation

17.1 Introduction

17.2 Alkyne–Azide‐based Bioconjugation

17.3 Activated Alkyne–Amine‐based Bioconjugation

17.4 Activated Alkyne–Thiol‐based Bioconjugation

17.5 Activated Alkyne–Hydroxyl‐based Bioconjugation

17.6 Activated Alkyne‐based Bioconjugation and Polymerization in Living Cells and Pathogens

17.7 Conclusion

References

18 AIE‐active BODIPY Derivatives

18.1 Introduction

18.2 Structures of BODIPY Derivatives

18.2.1 BODIPY Derivatives Without Other Chromophore

18.2.2 TPE‐containing BODIPYs

18.2.3 TPA‐containing BODIPYs

18.2.4 Benzodithiophene‐containing BODIPYs

18.2.5 Chiral BODIPYs

18.2.6 Metal‐containing BODIPYs

18.2.7 BODIPY‐containing Polymers

18.2.8 Other BODIPY Derivatives

18.3 Structural–property Relationship

18.3.1 Conjugation Effect

18.3.2 Number and Position of Substitutes

18.3.3 Substitution Group

18.3.4 Alkyl Substitutes on BODIPY Core

18.3.5 AIEgens Attached Through Nonconjugated Spacers

18.3.6 Other Substitution Structures

18.4 Application

18.4.1 Chemosensor

18.4.2 Bioimaging

18.5 Conclusion

References

19 Photochemistry‐regulated AIEgens and Their Applications

19.1 Introduction

19.2 Photocleavage Reaction

19.3 Photoreduction Reaction

19.4 Photocyclodehydrogenation Reaction

19.5 Photooxidative Dehydrogenation Reaction

19.6 Spiropyran‐merocyanine Reversible Conversion

19.7 Dithienylethene‐based Ring‐open/‐closing Reaction

19.8 Enol–Keto Isomerization Reaction

19.9 E/Z Isomerization Reaction

19.10 Photo‐induced [2 + 2] Cycloaddition

19.11 Combinational Photoreactions

19.12 Conclusion and Outlook

References

20 Design and Development of Naphthalimide Luminogens

20.1 Introduction

20.2 Naphthalimides with N‐Functionalization (I)

20.3 Naphthalimides Substituted at the 4th Position with Oxygen Atom (II)

20.4 Naphthalimides Substituted at the 4th Position with Nitrogen Atom (III)

20.5 Naphthalimides with C−C Aromatic Substitution (IV)

20.6 Naphthalimides with C−C Double‐ and Triple‐Bond Substitutions (V and VI)

20.7 Naphthalimides with the Significant Role of Multifunctionalization (VII)

20.8 Conclusion and Outlooks

References

Index. a

b

c

d

e

f

g

h

i

j

l

m

n

o

p

q

r

s

t

u

v

w

x

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Edited by

Youhong Tang

.....

A polysaccharide SSB sensor for facile, sensitive, and selective heparin detection has also been fabricated [48]. Heparin is a mucopolysaccharide composed of D‐β‐glucuronic acid and N‐acetylglucosamine to form a repeating disaccharide unit. Its skeleton has many anionic groups (such as carboxyl and sulfonic acid groups, etc.), making heparin highly negatively charged. As a medicinal anti‐hemagglutinating agent as well as a special antidote, heparin is hence of great significance for analytical detection. As shown in Figure 3.20a, salicylazine 33 is modified with two positively charged tertiary amine groups, which can be combined with negatively charged heparin through a charge–charge interaction. The emission of probe 33 in the Tris‐HCl buffer solution at pH 7.0 was extremely weak may be and its emission at 530 nm increased rapidly upon the addition of heparin (Figure 3.20b), which was due to the aggregation through electrostatic interactions. When the concentration of heparin reached 22 μg/ml, a fluorescence enhancement of about 40‐folds had been detected. The linear range is 0.2–14 μg/ml, the detection limit is 57.6 ng/ml, and the response time is as short as 2 minutes. Figure 3.20c also represents good selectivity of probe 33 for heparin from other polysaccharides such as chondroitin sulfate (ChS), hyaluronic acid (HA), and dextran (DeX).

Figure 3.20 (a) Design principle of the fluorescence turn‐on detection of heparin based on AIE characteristics of 33. (b) Fluorescence spectra of 33 in the presence of different amounts of heparin (from 0 to 22 μg/ml), λex = 391 nm. (c) The fluorescence intensity of 33 in the presence of different amounts of HA, DeX, ChS, and heparin.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Handbook of Aggregation-Induced Emission, Volume 2
Подняться наверх