Handbook of Aggregation-Induced Emission, Volume 1

Handbook of Aggregation-Induced Emission, Volume 1
Автор книги: id книги: 2313326     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 22976,1 руб.     (225,97$) Читать книгу Купить и скачать книгу Электронная книга Жанр: Химия Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119642893 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

The first volume of the ultimate reference on the science and applications of aggregation-induced emission  The Handbook of Aggregation-Induced Emission  explores foundational and advanced topics in aggregation-induced emission, as well as cutting-edge developments in the field, celebrating twenty years of progress and achievement in this important and interdisciplinary field. The three volumes combine to offer readers a comprehensive and insightful interpretation accessible to both new and experienced researchers working on aggregation-induced emission.  In this first volume of three, the editors survey the subject of aggregation-induced emission with a focus on the fundamentals of various branches of the discipline, such as crystallization-induced emission, room temperature phosphorescence, aggregation-induced delayed fluorescence, and more. This book covers the new properties of materials endowed by molecular aggregates. It also includes:  A thorough introduction to the mechanistic understanding of the importance of molecular motion to aggregation-induced emission An exploration of the aggregation-induced emission mechanism at the molecular level Practical discussions of aggregation-induced emission from the restriction of double bond rotation at the excited state, and clusterization-triggered emission Perfect for academic researchers working on aggregation-induced emission, this set of volumes is also ideal for professionals and students in the fields of photophysics, photochemistry, materials science, optoelectronic materials, synthetic organic chemistry, macromolecular chemistry, polymer science, and biological sciences.

Оглавление

Группа авторов. Handbook of Aggregation-Induced Emission, Volume 1

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Handbook of Aggregation‐Induced Emission. Volume 1 Tutorial Lectures and Mechanism Studies

List of Contributors

Preface to Handbook of Aggregation‐Induced Emission

Preface to Volume 1: Fundamentals

1 The Mechanistic Understanding of the Importance of Molecular Motions to Aggregation‐induced Emission

1.1 Introduction

1.2 Restriction of Intramolecular Motion

1.2.1 Restriction of Intramolecular Rotation

1.2.2 Restriction of Intramolecular Vibration

1.2.3 Ultrafast Insights into Tetraphenylethylene Derivatives

1.2.4 Theoretical Insights into Restriction of Intramolecular Motion

1.3 Restricted Access to Conical Intersection

1.4 Restriction of Access to the Dark State

1.5 Suppression of Kasha’s Rule

1.6 Through Space Conjugation

1.6.1 Clusterization‐Triggered Emission

1.6.2 Polymerization‐induced Emission

1.6.3 Excited‐state Through‐space Conjugation

1.7 Perspective

References

2 Understanding the AIE Mechanism at the Molecular Level

2.1 Introduction

2.2 Theoretical Methods. 2.2.1 Radiative and Nonradiative Rate Constants

2.2.2 Computational Details

2.3 Revealed AIE Mechanism

2.3.1 Rotating Vibrations of Intramolecular Aromatic Ring

2.3.2 Stretching Vibrations of Bonds

2.3.3 Bending Vibration of Bonds

2.3.4 Flipping Vibrations of Molecular Skeletons

2.3.5 Twisting Vibration of Molecular Skeletons

2.4 Visualize Calculated Parameters in Experiments

2.4.1 Stokes Shift vs Reorganization Energy

2.4.2 Resonance Raman Spectroscopy (RSS) vs Reorganization Energy

2.4.3 Isotope Effect vs DRE

2.4.4 Linear Relationship between Fluorescence Intensity and Amorphous Aggregate Size

2.4.5 Pressure‐induced Enhanced Emission (PIEE)

2.5 Molecular Design Based on AIE Mechanism

2.6 Summary and Outlook

Acknowledgments

References

3 Aggregation‐induced Emission from the Restriction of Double Bond Rotation at the Excited State

3.1 Introduction

3.2 AIE Phenomena and Applications from RDBR Mechanism. 3.2.1 Evolvement and Development of AIE Mechanisms

3.2.2 Investigation of RDBR AIE Mechanism by E/Z isomerization

3.2.3 Investigating of RDBR AIE Mechanism by Immobilization of TPE Propeller‐like Conformation

3.2.4 Research of Theoretical Calculation on RDBR

3.2.5 Other AIEgens Involving RBDR Process

3.3 Conclusions

References

4 The Expansion of AIE Thought: From Single Molecule to Molecular Uniting

4.1 Aggregation‐Induced Emission

4.2 Photoluminescence Materials Based on Molecular Set

4.3 Mechanoluminescence Materials Based on Molecular Set

4.3.1 Mechanoluminescence Materials with Fluorescence Emission

4.3.2 Mechanoluminescence Materials with Mechanical Induced Dual‐ or Tri‐color Emission

4.3.3 Quantitative Research of Mechanoluminescence Property

4.4 Mechanochromism Materials

4.4.1 Mechanochromism Materials Based on Polymorphs

4.4.2 Mechanochromism Materials Based on Excimer Emission

4.4.3 Other Kinds of Mechanochromism Materials

4.5 Room Temperature Phosphorescence Materials Based on Molecular Uniting

4.5.1 Room Temperature Phosphorescence Materials with Aromatics

4.5.2 Room Temperature Phosphorescence Materials with Simple or Nonaromatic Structure

4.5.3 Room Temperature Phosphorescence Materials with Multiple Emission

4.5.4 Photoinduced Room Temperature Phosphorescence Materials

4.6 Conclusion and Perspectives

References

5 Clusterization‐Triggered Emission

5.1 Introduction

5.2 Pure n‐Electron Systems

5.3 Pure π‐Electron Systems

5.4 (n, π)‐Electrons Systems

5.5 Other Systems

5.6 Summary

References

6 Crystallization‐induced Emission Enhancement

6.1 Introduction

6.2 Tetraphenylethylene Derivatives

6.3 CIEE Active Luminogens with Bulky Conjugation Core

6.3.1 Dibenzofulvene (DBF) Derivatives (Chart 6.2)

6.3.2 9‐([1,1′‐Biphenyl]‐4‐ylphenylmethylene)‐9H‐xanthene

6.3.3 Dicyanomethylenated Acridones

6.3.4 Bis(diarylmethylene)dihydroanthracene [31]

6.4 Other High‐contrast CIEE Luminogens. 6.4.1 4‐Dimethylamino‐2‐Benzylidene Malonic Acid Dimethyl Ester

6.4.2 Diphenyl Maleimide Derivatives [33]

6.4.3 3,4‐Bisthienylmaleic Anhydride [34]

6.4.4 Boron‐containing CIEE Luminogens

6.5 Potential Applications. 6.5.1 Volatile Organic Compounds (VOCs) Sensor

6.5.2 OLED

6.5.3 High‐density Data Storage

6.5.4 Mechanochromic (MC) Luminescent Sensor

6.6 Summary and Perspective

References

7 Surface‐fixation Induced Emission

7.1 Introduction

7.2 What Happened to the Characteristics of Molecules on the Clay Mineral Nanosheets

7.3 Clay–Molecular Complexes

7.4 Absorption Spectra of Clay–Molecular Complexes

7.5 Emission Enhancement Phenomenon in Clay–Molecular Complexes: S‐FIE

7.6 Mechanism of Surface‐Fixation Induced Emission

7.7 Summary and Outlook

Acknowledgment

References

8 Aggregation‐induced Delayed Fluorescence

8.1 Introduction

8.2 Novel Aggregation‐induced Delayed Fluorescence Luminogens

8.3 Conclusion and Outlook

References

9 Homogeneous Systems to Induce Emission of AIEgens

9.1 Introduction

9.2 Homogeneous Solution

9.2.1 Complexation with Anions

9.2.2 Complexation with Cations

9.2.3 Inclusion Complexes

9.2.4 Adhesion on Macromolecules

9.2.5 Steric Hindrance

9.2.6 Covalent Linkage

9.3 Liquid

9.4 Gels and Network Polymers

9.4.1 Chemically Crosslinked Gels

9.4.2 Physically Crosslinked Gels

9.5 Crystalline Materials

9.6 Outlook and Future Perspectives

References

10 Hetero‐aggregation‐induced Tunable Emission (HAITE) Through Cocrystal Strategy

10.1 Introduction

10.2 Interactions Within Organic Cocrystals

10.3 Preparation of Organic Cocrystals

10.4 Molecular Stacking Modes Within Organic Cocrystals

10.5 Characterization of Organic Cocrystals

10.6 HAITE Through Cocrystal Strategy

10.6.1 HAITE with Tunable Color and Enhanced Emission

10.6.1.1 Insignificant Changed Intensity but Tuned Color

10.6.1.2 Enhanced Emission and Tuned Color

10.6.2HAITE with Increased PLQY but Intrinsic Color

10.6.3 HAITE: Thermally Activated Delayed Fluorescence

10.6.4 HAITE‐phosphorescence

10.7 Summary and Outlook

References

11 Anti‐Kasha Emission from Organic Aggregates

11.1 Introduction

11.2 Anti‐Kasha Emission from Aromatic Carbonyl Compounds in Aggregates

11.3 Anti‐Kasha Emission from Azulene Compounds in Aggregate

11.4 Anti‐Kasha Emission from Other Unconventional Aromatic Compounds in Aggregates

11.5 Conclusions

References

12 Aggregation‐enhanced Emission: From Flexible to Rigid Cores

12.1 Introduction

12.2 Freely Moving Rotors‐induced Emission Enhancement

12.3 Guest‐induced Emission Enhancement

12.4 Conclusion

Acknowledgment

References

13 Room‐temperature Phosphorescence of Pure Organics

13.1 Introduction

13.2 Fundamental Mechanism in Organic Phosphorescence. 13.2.1 Photophysical Process for Phosphorescence

13.2.2 Theoretical Study on Phosphorescent Process

13.3 Recent Progress in Organic RTP Materials

13.3.1 Crystallization‐induced RTP

13.3.1.1 Heavy Atom Effect

13.3.1.2 Molecular Interaction

13.3.1.3 H‐aggregation

13.3.2 Doping in Rigid Matrix‐induced RTP

13.3.2.1 Host–Guest System

13.3.2.2 Doping in Polymer Matrix

13.3.3 Clustering‐triggered RTP

13.3.3.1 Natural Products

13.3.3.2 Synthetic Compounds

13.3.4 Other Systems. 13.3.4.1 Amorphous Organics

13.3.4.2 Organic Framework

13.3.4.3 Supramolecular Organics

13.3.4.4 Hybrid Perovskites

13.3.5 Applications

13.4 Conclusions and Perspectives

References

14 A Global Potential Energy Surface Approach to the Photophysics of AIEgens: The Role of Conical Intersections

14.1 Introduction

14.2 Methodological Aspects. 14.2.1 Intramolecular Restriction Models and the FGR‐based Approach

14.2.2 A PES‐based Description of Photochemical Mechanisms

14.2.3 Computational Approaches for Excited States

14.2.3.1 Electronic Structure Methods for Excited States

14.2.3.2 Dynamics Simulations in the Context of AIE

14.2.4 Methods for Large Systems

14.3 CI‐centered Global PES for AIEgens

14.3.1 Double‐bond Torsion

14.3.2 Double‐bond Torsion vs Cyclization in TPE Derivatives

14.3.3 Excited‐state Intramolecular Proton Transfer (ESIPT) Compounds

14.3.4 Ring Puckering

14.3.5 Bond Stretching

14.3.6 A View of AIE Based on the RACI Model and the Global PES

14.4 Crystallization‐induced Phosphorescence

14.5 Effect of Intermolecular and Intramolecular Interactions on the Photophysics of AIEgens. 14.5.1 Excitonic Effects in AIE

14.5.2 Effect of Intramolecular and Intermolecular Interactions on Emission Color

14.6 New Challenges. 14.6.1 The Role of Dark States in AIE

14.6.2 Pressure‐induced Emission Enhancement

14.6.3 AIE in Transition Metal (TM) Compounds

14.7 Conclusions and Outlook

References

15 Multicomponent Reactions as Synthetic Design Tools of AIE and Emission Solvatochromic Quinoxalines

15.1 Introduction

15.2 Synthetic Approaches to Quinoxalines via Multicomponent Reactions and One‐Pot Processes

15.3 Photophysical Properties and Emission Solvatochromicity of Quinoxalines

15.4 AIE Characteristics and Effects of Quinoxalines

15.5 Conclusion

Acknowledgments

References

16 Aggregation‐induced Emission Luminogens with Both High‐luminescence Efficiency and Charge Mobility

16.1 Introduction

16.2 p‐Type OSCs

16.3 n‐Type OSCs

16.4 Ambipolar OSCs

16.5 Conclusion and Perspective

References

17 Morphology Modulation of Aggregation‐induced Emission: From Thermodynamic Self‐assembly to Kinetic Controlling

17.1 Introduction

17.2 Aggregation Modulation of AIE Bioprobes via Hydrophilicity Improvement

17.2.1 Molecular Modification

17.2.2 Polymerization with Hydrophilic Matrix

17.3 Thermodynamic Self‐assembly of AIE Materials

17.4 Morphology Tuning of AIE Nanoaggregates

17.5 Kinetic‐driven Preparation of AIE NPs

17.6 Conclusion and Outlook

References

18 AIE‐active Polymer

18.1 Introduction

18.2 Photophysical Properties. 18.2.1 Quantum Yield

18.2.2 Photosensitization

18.2.3 Two‐photon Absorption and Emission

18.2.4 Circularly Polarized Luminescence

18.3 Applications. 18.3.1 Chem‐sensor

18.3.2 Bioimaging

18.3.3 Therapy Applications

18.4 Conclusion and Perspective

Acknowledgments

References

19 Liquid‐crystalline AIEgens: Materials and Applications

19.1 Introduction

19.2 Materials: Molecular Design. 19.2.1 Discotic LC AIEgen

19.2.2 Calamitic LC AIEgens

19.2.3 Polymeric LC AIEgens

19.3 Applications of LC AIEgens. 19.3.1 Linearly Polarized Luminescence

19.3.2 Circularly Polarized Luminescence

19.4 Conclusion

References

20 Push–Pull AIEgens

20.1 Introduction

20.2 Basic Concept of Molecular Design. 20.2.1 Photophysical Excited States in Aggregates

20.2.2 Fundamental Molecular Design to Achieve Push–Pull AIEgens

20.3 Push–Pull AIEgens from Rotor Structure

20.3.1 Double Bond Stator

20.3.2 Point‐restricted Rotors from Atoms or Functional Groups

20.3.3 Aromatic Rotors

20.4 Push–Pull AIEgens from ACQ Chromophores

20.4.1 BT‐based AIEgens

20.4.2 Cyanine and DCM‐based AIEgens

20.4.3 QM‐based AIEgens

20.4.4 DPP‐based AIEgens

20.4.5 Rylene‐based AIEgens

20.5 Concluding Remarks

References

Index. a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Edited by

Youhong Tang

.....

Figure 1.10 (a) Schematic illustration of the cluster formation, energy variation, and (b) the formation of through‐space conjugation involved in the CTE.

Source: Adapted from Ref. [21a] with permission from Elsevier.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Handbook of Aggregation-Induced Emission, Volume 1
Подняться наверх