Phosphors for Radiation Detectors

Phosphors for Radiation Detectors
Автор книги: id книги: 2325168     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 19146,7 руб.     (186,95$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Отраслевые издания Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119583387 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Phosphors for Radiation Detector Phosphors for Radiation Detectors Discover a comprehensive overview of luminescence phosphors for radiation detection In Phosphors for Radiation Detection, accomplished researchers Takayuki Yanagida and Masanori Koshimizu deliver a state-of-the-art exploration of the use of phosphors in radiation detection. The internationally recognized contributors discuss the fundamental physics and detector functions associated with the technology with a focus on real-world applications. The book discusses all forms of luminescence phosphors for radiation detection used in a variety of fields, including medicine, security, resource exploration, environmental monitoring, and high energy physics. Readers will discover discussions of dosimeter materials, including thermally stimulated luminescent materials, optically stimulated luminescent materials, and radiophotoluminescence materials. The book also covers transparent ceramics and glasses and a broad range of devices used in this area. Phosphors for Radiation Detection also includes: Thorough introductions to ionizing radiation induced luminescence, organic scintillators, and inorganic oxide scintillators Comprehensive explorations of luminescent materials, including discussions of materials synthesis and their use in gamma-ray, neutron, and charged particle detection Practical discussions of semiconductor scintillators, including treatments of organic-inorganic layered perovskite materials for scintillation detectors In-depth examinations of thermally stimulated luminescent materials, including discussions of the dosimetric properties for photons, charged particles, and neutrons Relevant for research physicists, materials scientists, and electrical engineers, Phosphors for Radiation Detection is an also an indispensable resource for postgraduate and senior undergraduate students working in detection physics.

Оглавление

Группа авторов. Phosphors for Radiation Detectors

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Wiley Series in Materials for Electronic and Optoelectronic Applications

Phosphors for Radiation Detectors

List of Contributors

Preface

Series Preface. Wiley Series in Materials for Electronic and Optoelectronic Applications

1 Ionizing Radiation Induced Luminescence

1.1 Introduction

1.2 Interactions of Ionizing Radiation with Matter

1.3 Scintillation. 1.3.1 Energy Conversion Mechanism

1.3.2 Emission Mechanism

1.3.3 Scintillation Light Yield and Energy Resolution

1.3.4 Timing Properties

1.3.5 Radiation Hardness

1.3.6 Temperature Dependence

1.4 Ionizing Radiation Induced Storage Luminescence. 1.4.1 General Description

1.4.2 Analytical Description of TSL

1.4.3 Analytical Description of OSL

1.5 Relationship of Scintillation and Storage Luminescence

1.6 Common Characterization Techniques of Ionizing Radiation Induced Luminescence Properties

References

2 Organic Scintillators

2.1 Introduction

2.2 Basic Electronic Processes in Organic Scintillators

2.2.1 Electronic States and Excited States Dynamics of Organic Molecules

2.2.2 Excitation Energy Transfer

2.2.3 Scintillation Dynamics in Organic Scintillators at High Linear Energy Transfer

2.3 Liquid Scintillators

2.4 Organic Crystalline Scintillators

2.5 Plastic Scintillators

2.6 Organic–Inorganic Hybrid Scintillators

2.6.1 Loaded Organic Scintillators

2.6.2 Organic–Inorganic Nanocomposite Scintillators

References

3 Inorganic Oxide Scintillators

3.1 Introduction

3.2 Crystal Growth

3.3 Outlines of Oxide Scintillators

3.4 Silicate Materials. 3.4.1 Ce:Gd2SiO5 (Ce:GSO)

3.4.2 Ce:Lu2SiO5 (Ce:LSO)

3.4.3 Ce:Gd2Si2O7 (Ce:GPS)

3.4.4 LPS

3.5 Garnet Materials. 3.5.1 Ce:Y3Al5O12 (Ce:YAG)

3.5.2 Ce:Lu3Al5O12 (Ce:LuAG), Pr:Lu3Al5O12 (Pr:LuAG)

3.5.3 Ce:Gd3Al2Ga3O12 (Ce:GAGG)

3.5.4 Ce:Tb3Al5O12 (Ce:TAG)

3.6 Perovskite Materials. 3.6.1 Ce:YAlO3 (Ce:YAP)

3.6.2 Ce:LuAlO3 (Ce:LuAP)

3.7 Materials with Intrinsic Luminescence. 3.7.1 CdWO4

3.7.2 Bi4Ge3O12 (BGO)

3.7.3 PbWO4

References

4 Inorganic Fluoride Scintillators

4.1 Introduction

4.2 Crystal Growth of Fluorides. 4.2.1 Classification of Methods for Crystal Growth

4.2.2 Furnace Materials, Atmosphere, and Scavengers for Fluoride Crystal Growth

4.2.3 Fluoride Crystal Growth Methods by Pulling Out from the Melt

4.2.4 Fluoride Crystal Growth Methods by Solidifying the Melt in the Crucible

4.2.5 Fluoride Crystal Growth Methods Without Using Crucibles

4.3 Outline of Fluoride Scintillators

4.4 Fluoride Scintillators for γ‐Ray Detection. 4.4.1 Fluoride Scintillators Based on Luminescence from 5d‐4f Transitions of Ce3+ Ions

4.4.2 Fluoride Scintillators Based on Core‐Valence Luminescence

4.4.3 VUV Emitting Fluoride Scintillators Doped with Nd3+, Er3+, and Tm3+ Ions

4.5 Fluoride Scintillators for Neutron Detection. 4.5.1 Review for Neutron Scintillators

4.5.2 LiCaAlF6 Single Crystals

4.5.3 LiF/CaF2 Eutectic Composites

4.6 Fluoride Scintillators for Charged Particle Detection. 4.6.1 Methods for Charged Particle Detection

4.6.2 CaF2 Based Scintillators for Charged Particle Detection

References

5 Inorganic Halide Scintillators

5.1 Introduction: History of Inorganic Halide Scintillator Research and Development

5.2 Characteristics of Halide Materials. 5.2.1 Formation of Color Center and Self‐Trapped Exciton

5.2.2 Hygroscopicity

5.3 Basic Techniques for Halide Scintillation Crystal Growth

5.4 Novel Ternary and Quaternary Halide Scintillators. 5.4.1 Alkali Halide‐Rare Earth Halide (AX–REX3)

5.4.2 Alkali Halide‐Alkalin Earth Halide (AX–AEX2)

5.4.3 Elpasolite

5.5 Mixed‐Anion Halide Scintillators

5.6 Next Generation of Halide Scintillators. 5.6.1 Hf‐ and Tl‐Based Halide Scintillators

References

6 Semiconductor Scintillators

6.1 Introduction

6.2 Photoluminescence and Scintillation Mechanisms in Semiconductors

6.3 Various Semiconductor Scintillators

6.3.1 Undoped Semiconductor Scintillator

6.3.2 Doped Semiconductor Scintillator

6.3.2.1 Semiconductor Scintillator with Isoelectronic Impurities

6.3.2.2 Semiconductor Scintillators with Donor Impurities

6.3.2.3 Semiconductor Scintillators with Acceptor Impurities

6.3.2.4 Semiconductor Scintillators with a Donor–Acceptor Pair

6.4 Quantum Size Effect

6.5 Organic–Inorganic Perovskite‐Type Compounds. 6.5.1 Introduction

6.5.2 Materials and Structures

6.5.3 Sample Preparation

6.5.4 Fundamental Optical Property

6.5.5 Scintillation

6.5.5.1 Scintillation Light Yield

6.5.5.2 Scintillation Decay Time

6.5.5.3 Afterglow

References

7 Thermally Stimulated Luminescent (TSL) Materials

7.1 Introduction

7.2 TSL Phenomenon. 7.2.1 Basic Principles of TSL

7.2.2 Theory and Measurement of Glow Curves. 7.2.2.1 Theory of Glow Curves. 7.2.2.1.1 First‐Order Kinetics

7.2.2.1.2 Second‐Order Kinetics and General‐Order Kinetics

7.2.2.1.3 Relationship Between Glow Curve and Parameters

7.2.2.2 Measurement of Glow Curves

7.3 TSL Materials: Fluoride, Oxides, Sulfates, and Borate. 7.3.1 Fluorides. 7.3.1.1 Lithium Fluoride (LiF)

7.3.1.2 Calcium Fluoride (CaF)

7.3.2 Oxides. 7.3.2.1 Aluminum Oxide (Al2O3)

7.3.2.2 Beryllium Oxide (BeO)

7.3.3 Sulfates. 7.3.3.1 Calcium Sulfate (CaSO4)

7.3.4 Borates

7.3.4.1 Lithium Borate (Li2B4O7)

7.3.4.2 Magnesium Borate (MgB4O7)

7.4 TSL Dosimetric Properties for Photons, Charged Particles, and Neutrons

7.4.1 TSL Dosimetric Properties for Photons

7.4.2 TSL Dosimetric Properties for Charged Particles

7.4.3 TSL Dosimetric Properties for Neutrons

7.5 Two‐Dimensional (2‐D) TSL Dosimetry. 7.5.1 Introduction

7.5.2 Types of 2‐D TSLDs

7.5.3 Measurement Systems

7.5.4 Application of 2‐D TSLDs in Photon Beam Radiotherapy. 7.5.4.1 TSL Foils

7.5.4.2 TSL Slab

7.5.4.3 Ceramic TSL Slab

7.5.5 Outlook for 2‐D TSLDs

References

8 Optically‐Stimulated Luminescent Dosimeters

8.1 Introduction

8.2 Principles of OSL Phenomenon

8.3 OSL Materials and Dosimeters

8.4 Applications of OSL

8.5 Future Perspective

References

9 Radiophotoluminescence (RPL)

9.1 Introduction

9.2 RPL Phenomenon and the Definition

9.3 RPL Materials and Applications. 9.3.1 Introduction

9.3.2 Ag‐Doped Sodium‐Aluminophosphate Glasses. 9.3.2.1 Introduction

9.3.2.2 Principal Properties

9.3.2.3 Application in Personnel and Environmental Dose Monitoring

9.3.2.4 Other Applications in R&D

9.3.3 Al2O3:C,Mg. 9.3.3.1 Introduction

9.3.3.2 Principal Properties

9.3.3.3 Fluorescent Nuclear Track Detector

9.3.4 LiF. 9.3.4.1 Introduction

9.3.4.2 Principal Properties

9.3.4.3 Disk‐Type Imaging Plate

9.3.4.4 Fluorescent Nuclear Track Detector

9.3.5 Sm‐Doped Compounds. 9.3.5.1 Introduction

9.3.5.2 Principal Properties

9.3.5.3 Application in Microbeam Radiation Therapy (MRT)

9.3.6 Other RPL Materials

9.4 Conclusions

References

10 New Materials for Radiation Detectors: Transparent Ceramics

10.1 Introduction of Transparent Ceramic Materials. 10.1.1 Light Scattering Sources in Ceramics

10.1.2 History and Applications on Transparent Ceramics

10.2 Preparation Methodology. 10.2.1 Sintering Mechanism of Ceramics

10.2.1.1 Initial Stage

10.2.1.2 Intermediate Stage

10.2.1.3 Final Stage

10.2.2 Effect of Residual Pores

10.2.3 Preparation Methods of Transparent Ceramics

10.3 Transparent Materials

10.4 Transparent Ceramic Scintillator

10.4.1 Sesquioxide (Such as Y2O3, Gd2O3, and Lu2O3)

10.4.2 Gd2O2S (GOS)

10.4.3 Garnet Materials (Such as YAG, LuAG, and GAGG)

10.4.4 Lu2SiO5 (LSO)

10.4.5 SrHfO3

10.4.6 La2Zr2O7 and La2Hf2O7

10.4.7 ZnO

10.4.8 BaF2

10.4.9 CeF3

10.4.10 CsBr

10.4.11 LaBr3

10.4.12 SrI2

10.5 Transparent Ceramics for Dosimeter

10.5.1 Al2O3

10.5.2 CaF2

10.5.3 MgO

10.5.4 MgF2

10.5.5 CsBr

10.5.6 Y3Al5‐xGaxO12 (YAGG)

References

11 Luminescence in Glass‐Based Materials by Ionizing Radiation

11.1 Introduction

11.2 Structural and Physical Properties of Glass

11.3 Attenuation of Quantum Beam as Shielding Materials

11.4 Defect Formation in Oxide Glass by Quantum Beam Irradiation

11.5 Scintillation in Oxide Glass

11.5.1 Glass Scintillators for X‐Ray and γ‐Ray

11.5.2 Glass Scintillators for Neutrons

11.5.3 Storage Luminescence in Glass

11.6 Scintillation and Dosimetry in Non‐oxide Glass

11.7 Preparation of Glass

11.7.1 Melt Process

11.7.2 Vapor Process and Fiber Drawing

11.7.3 Liquid Process

11.8 Future Prospectives for Glass‐Based Materials

Acknowledgement

References

12 Detectors Using Radiation Induced Luminescence

12.1 Introduction

12.2 General Issues to Manufacturing the Detector

12.3 Scintillation Detectors for Gamma‐Rays and X‐Rays

12.3.1 Gamma‐Ray Spectrometer

12.3.2 Survey Meter and Area Monitor

12.3.3 Scintillation Detectors for Medical Applications

12.3.3.1 X‐Ray Flat Panel Detectors (FPDs)

12.3.3.2 X‐Ray Tomography (CT)

12.3.3.3 Single Photon Emission Computed Tomography (SPECT)

12.3.3.4 Emission Tomography (PET)

12.3.4 Scintillation Detectors for Other Applications

12.3.4.1 Nuclear Well Logging

12.3.4.2 Security

12.4 Scintillation Detectors for Charged Particles

12.5 Scintillation Detectors for Neutrons

12.5.1 Thermal Neutron Detectors

12.5.1.1 Medical Applications: Boron Neutron Capture Therapy

12.5.1.2 Security Applications: Radiation Portal Monitor

12.5.1.3 Material Science Applications: Neutron Imaging

12.5.2 Fast Neutron Detectors

12.6 Personal Dosimeters

12.6.1 TL‐Based Dosimetry System

12.6.2 OSL‐Based Dosimetry System

12.6.3 RPL‐Based Dosimetry System

12.7 OSL‐Based Imaging System

References

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

www.wiley.com/go/meoa

.....

(1.31)

respectively. In these equations, dn1/dt and dm1/dt represent a charging (trapping) process, and (η + ζ)nm and Βm nm1 represent dissipation processes. Let us consider the energy dissipation after stopping the irradiation at temperature T. In this case, if we assume J = 0 in (1.27)–(1.30) at time t = 0, then TL from the electron centers by electron release is

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Phosphors for Radiation Detectors
Подняться наверх