Social Network Analysis

Social Network Analysis
Автор книги: id книги: 2362226     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 18830,4 руб.     (187,89$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Техническая литература Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119836735 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

SOCIAL NETWORK ANALYSIS As social media dominates our lives in increasing intensity, the need for developers to understand the theory and applications is ongoing as well. This book serves that purpose. Social network analysis is the solicitation of network science on social networks, and social occurrences are denoted and premeditated by data on coinciding pairs as the entities of opinion. The book features: Social network analysis from a computational perspective using python to show the significance of fundamental facets of network theory and the various metrics used to measure the social network. An understanding of network analysis and motivations to model phenomena as networks. Real-world networks established with human-related data frequently display social properties, i.e., patterns in the graph from which human behavioral patterns can be analyzed and extracted. Exemplifies information cascades that spread through an underlying social network to achieve widespread adoption. Network analysis that offers an appreciation method to health systems and services to illustrate, diagnose, and analyze networks in health systems. The social web has developed a significant social and interactive data source that pays exceptional attention to social science and humanities research. The benefits of artificial intelligence enable social media platforms to meet an increasing number of users and yield the biggest marketplace, thus helping social networking analysis distribute better customer understanding and aiding marketers to target the right customers. Audience The book will interest computer scientists, AI researchers, IT and software engineers, mathematicians.

Оглавление

Группа авторов. Social Network Analysis

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Social Network Analysis. Theory and Applications

Preface

1. Overview of Social Network Analysis and Different Graph File Formats

1.1 Introduction—Social Network Analysis

1.2 Important Tools for the Collection and Analysis of Online Network Data

1.3 More on the Python Libraries and Associated Packages

1.4 Execution of SNA in Terms of Real-Time Application: Implementation in Python

1.5 Clarity Toward the Indices Employed in the Social Network Analysis

1.5.1 Centrality

1.5.2 Transitivity and Reciprocity

1.5.3 Balance and Status

1.6 Conclusion

References

2. Introduction To Python for Social Network Analysis

2.1 Introduction

2.2 SNA and Graph Representation

2.2.1 The Common Representation of Graphs

2.2.2 Important Terms to Remember in Graph Representation

2.3 Tools To Analyze Network

2.3.1 MS Excel

2.3.2 UCINET

2.4 Importance of Analysis

2.5 Scope of Python in SNA

2.5.1 Comparison of Python With Traditional Tools

2.6 Installation

2.6.1 Good Practices

2.7 Use Case

2.7.1 Facebook Case Study

2.8 Real-Time Product From SNA

2.8.1 Nevaal Maps

References

3. Handling Real-World Network Data Sets

3.1 Introduction

3.2 Aspects of the Network

3.3 Graph

3.3.1 Node, Edges, and Neighbors

3.3.2 Small-World Phenomenon

3.4 Scale-Free Network

3.5 Network Data Sets

3.6 Conclusion

References

4. Cascading Behavior in Networks

4.1 Introduction

4.1.1 Types of Data Generated in OSNs

4.1.2 Unstructured Data

4.1.3 Tools for Structuring the Data

4.2 User Behavior

4.2.1 Profiling

4.2.2 Pattern of User Behavior

4.2.3 Geo-Tagging

4.3 Cascaded Behavior

4.3.1 Cross Network Behavior

4.3.2 Pattern Analysis

4.3.3 Models for Cascading Pattern

References

5. Social Network Structure and Data Analysis in Healthcare

5.1 Introduction

5.2 Prognostic Analytics—Healthcare

5.3 Role of Social Media for Healthcare Applications

5.4 Social Media in Advanced Healthcare Support

5.5 Social Media Analytics

5.5.1 Phases Involved in Social Media Analytics

5.5.2 Metrics of Social Media Analytics

5.5.3 Evolution of NIHR

5.6 Conventional Strategies in Data Mining Techniques

5.6.1 Graph Theoretic

5.6.2 Opinion Evaluation in Social Network

5.6.3 Sentimental Analysis

5.7 Research Gaps in the Current Scenario

5.8 Conclusion and Challenges

References

6. Pragmatic Analysis of Social Web Components on Semantic Web Mining

6.1 Introduction

6.2 Background. 6.2.1 Web

6.2.2 Agriculture Information Systems

6.2.3 Ontology in Web or Mobile Web

6.3 Proposed Model

6.3.1 Developing Domain Ontology

6.3.2 Building the Agriculture Ontology with OWL-DL

6.3.2.1 Building Class Axioms

6.3.3 Building Object Property Between the Classes in OWL-DL

6.3.3.1 Building Object Property Restriction in OWL-DL

6.3.4 Developing Social Ontology

6.3.4.1 Building Class Axioms

6.3.4.2 Analysis of Social Web Components on Domain Ontology Under Agriculture System

6.4 Building Social Ontology Under the Agriculture Domain. 6.4.1 Building Disjoint Class

6.4.2 Building Object Property

6.5 Validation

6.6 Discussion

6.7 Conclusion and Future Work

References

7. Classification of Normal and Anomalous Activities in a Network by Cascading C4.5 Decision Tree and K-Means Clustering Algorithms

7.1 Introduction

7.1.1 Cascade Blogosphere Information

7.1.2 Viral Marketing Cascades

7.1.3 Cascade Network Building

7.1.4 Cascading Behavior Empirical Research

7.1.5 Cascades and Impact Nodes Detection

7.1.6 Topologies of Cascade Networks

7.1.7 Proposed Scheme Contributions

7.2 Literature Survey

7.2.1 Network Failures

7.3 Methodology. 7.3.1 K-Means Clustering for Anomaly Detection

7.3.2 C4.5 Decision Trees Anomaly Detection

7.4 Implementation

7.4.1 Training Phase Zi

7.4.2 Testing Phase

7.5 Results and Discussion

7.5.1 Data Sets

7.5.2 Experiment Evaluation

7.6 Conclusion

References

8. Machine Learning Approach To Forecast the Word in Social Media

8.1 Introduction

8.2 Related Works

8.3 Methodology

8.3.1 TF-IDF Technique

8.3.2 Times Series

8.4 Results and Discussion

8.5 Conclusion

References

9. Sentiment Analysis-Based Extraction of Real-Time Social Media Information From Twitter Using Natural Language Processing

9.1 Introduction

9.1.1 Applications for Social Media

9.1.2 Social Media Data Challenges

9.2 Literature Survey

9.2.1 Techniques in Sentiment Analysis

9.3 Implementation and Results

9.3.1 Online Commerce

9.3.2 Feature Extraction

9.3.3 Hashtags

9.3.4 Punctuations

9.4 Conclusion

9.5 Future Scope

References

10. Cascading Behavior: Concept and Models

10.1 Introduction

10.2 Cascade Networks

10.3 Importance of Cascades

10.4 Purposes for Studying Cascades

10.5 Collective Action

10.6 Cascade Capacity

10.7 Models of Network Cascades

10.7.1 Decision-Based Diffusion Models

10.7.2 Probabilistic Model of Cascade

10.7.3 Linear Threshold Model

10.7.4 Independent Cascade Model

10.7.5 SIR Epidemic Model

10.8 Centrality

10.9 Cascading Failures

10.10 Cascading Behavior Example Using Python

10.11 Conclusion

References

11. Exploring Social Networking Data Sets

11.1 Introduction

11.1.1 Network Theory

11.1.2 Social Network Analysis

11.2 Establishing a Social Network

11.2.1 Designing the Symmetric Social Network

11.2.2 Creating an Asymmetric Social Network

11.2.3 Implementing and Visualizing Weighted Social Networks

11.2.4 Developing the Multigraph for Social Networks

11.3 Connectivity of Users in Social Networks

11.3.1 The Degree to which a Network Exists

11.3.2 Coefficient of Clustering

11.3.3 The Shortest Routes and Length Between Two Nodes

11.3.4 Eccentricity Distribution of a Node in a Social Network

11.3.5 Scale-Independent Social Networks

11.3.6 Transitivity

11.4 Centrality Measures in Social Networks

11.4.1 Centrality by Degree

11.4.2 Centrality by Eigenvectors

11.4.3 Centrality by Betweenness

11.4.4 Closeness to All Other Nodes

11.5 Case Study of Facebook

11.6 Conclusion

References

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Scrivener Publishing

.....

16. Sîrbu, A., Loreto, V., Servedio, V.D., Tria, F., Opinion dynamics: models, extensions and external effects, in: Participatory Sensing, Opinions and Collective Awareness, pp. 363–401, 2017.

17. Sîrbu, A., Loreto, V., Servedio, V.D., Tria, F., Opinion dynamics with disagreement and modulated information. J. Stat. Phys., 151, 1, 218–237, 2013.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Social Network Analysis
Подняться наверх