Catalytic Asymmetric Synthesis

Catalytic Asymmetric Synthesis
Автор книги: id книги: 2377930     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 27905 руб.     (301,66$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Химия Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119736417 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Seminal text presenting detailed accounts of the most important catalytic asymmetric reactions known today This book covers the preparation of enantiomerically pure or enriched chemical compounds by use of chiral catalyst molecules. While reviewing the most important catalytic methods for asymmetric organic synthesis, this book highlights the most important and recent developments in catalytic asymmetric synthesis. Edited by two well-qualified experts, sample topics covered in the work include: Metal catalysis, organocatalysis, photoredox catalysis, enzyme catalysis C-H bond functionalization reactions Carbon-carbon bond formation reactions, carbon-halogen bond formation reactions, hydrogenations, polymerizations, flow reactions Axially chiral compoundsRetaining the best of its predecessors but now thoroughly up to date with the important and recent developments in catalytic asymmetric synthesis, the 4th edition of Catalytic Asymmetric Synthesis serves as an excellent desktop reference and text for researchers and students, from upper-level undergraduates all the way to experienced professionals in industry or academia.

Оглавление

Группа авторов. Catalytic Asymmetric Synthesis

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

CATALYTIC ASYMMETRIC SYNTHESIS

PREFACE

PREFACE TO THE FIRST EDITION

LIST OF CONTRIBUTORS

1 ASYMMETRIC ENAMINE AND IMINIUM ION CATALYSIS

1.1. INTRODUCTION

1.2. REPRESENTATIVE ORGANOCATALYSTS. 1.2.1. Introduction

1.2.2. Reactivity of Diphenylprolinol Silyl Ether Catalyst and MacMillan’s Catalyst

1.2.3. Cinchona Amine‐Based Catalysts

1.3. ENAMINE. 1.3.1. Aldol Reaction

1.3.2. Mannich Reaction

1.3.3. Other Functionalization of the α‐Position of Carbonyl Groups

1.3.4. Michael Reaction

1.3.5. Dienamine and Trienamine as an Intermediate [33]

1.4. IMINIUM ION. 1.4.1. Introduction of an Iminium Ion

1.4.2. Two Reaction Paths

1.4.3. Diels‐Alder Type Reaction

1.4.4. Michael Reaction

1.5. DOMINO REACTION. 1.5.1. Introduction of Domino (Cascade and Tandem) Reactions

1.5.2. Enders’ Work

1.6. DOMINO REACTION AND TOTAL SYNTHESIS

1.6.1. Steroid Skeleton

1.6.2. α‐Skytanthine and Quinine

1.6.3. (+)‐Lycoposerramine Z

1.6.4. Estradiol Methyl Ether

1.6.5. MacMillan’s Alkaloid Synthesis

1.6.6. Prostaglandin E1 Methyl Ester

1.6.7. Corey Lactone

1.7. COMBINATION OF TWO CATALYSTS

1.7.1. Combination of Two Organocatalysts

1.7.2. Combination of Organocatalyst and Metal Catalyst

1.7.2.1. Enamine and Metal Catalyst

1.7.2.2. Iminium Ion and Transition Metal Catalyst

1.7.3. Two Chiral Catalysts

1.8. CONCLUSION

REFERENCES

2 ASYMMETRIC ACID ORGANOCATALYSIS

2.1. INTRODUCTION

2.2. FEATURES OF CHIRAL BRØNSTED ACIDS

2.2.1. Acidity of Chiral Brønsted Acids

2.2.2. Mode of Activation of Chiral Phosphoric Acids and Related Compounds

2.2.3. Effect of Metal Salts

2.3. NUCLEOPHILIC REACTIONS. 2.3.1. Reactions with Imines and Iminium Salts

2.3.2. Reactions with Carbonyl Compounds and Oxonium Salts

2.4. CYCLOADDITION REACTIONS. 2.4.1. Diels‐Alder Reactions

2.4.2. Aza‐Diels‐Alder Reactions

2.4.3. Oxa‐Diels‐Alder Reactions

2.4.4. Other Cycloaddition Reactions

2.4.5. Nazarov Cyclizations

2.5. MICHAEL REACTIONS

2.6. REDUCTION. 2.6.1. Reduction of Imines. 2.6.1.1. Transfer Hydrogenation of Ketimines

2.6.2. Reduction of Ketones

2.6.3. Reduction of Alkenes

2.7. ADDITION TO ALKENES

2.8. SUBSTITUTION REACTIONS

2.9. REARRANGEMENT REACTIONS

2.10. MISCELLANEOUS REACTIONS

2.11. CONSTRUCTION OF AXIALLY, PLANAR, AND HELICALLY CHIRAL COMPOUNDS

2.12. COMBINATION WITH TRANSITION METAL CATALYSTS [25–27]

2.13. COMBINATION WITH PHOTOREDOX CATALYST

2.14. CONCLUSION

ACKNOWLEDGMENTS

REFERENCES

3 ASYMMETRIC BASE ORGANOCATALYSIS

3.1. INTRODUCTION

3.2. CHIRAL TERTIARY AMINE CATALYSTS: CHIRAL ACID–BASE BIFUNCTIONAL CATALYSIS

3.2.1. Application of Designed Pronucleophiles

3.2.2. Carbon‐Heteroatom Bond Formations

3.2.3. Other Applications

3.3. CHIRAL GUANIDINE CATALYSTS

3.4. OTHER CHIRAL UNCHARGED ORGANOBASE CATALYSTS: CHIRAL ORGANOSUPERBASES

3.4.1. Chiral Cyclopropenimine Catalysts

3.4.2. Chiral Triaryliminophosphorane Catalysts

3.4.3. Chiral P1‐Phosphazene Catalysts

3.4.4. Chiral Higher‐Order Phosphazene Catalysts

3.5. CONCLUSION AND OUTLOOK

REFERENCES

4 ASYMMETRIC PHASE‐TRANSFER AND ION‐PAIR ORGANOCATALYSES

4.1. INTRODUCTION

4.2. CHIRAL CATION. 4.2.1. Chiral Cation Phase‐Transfer Catalysis. 4.2.1.1. Alkylation

4.2.1.2. Addition to Michael Acceptors

4.2.1.3. Addition to Carbonyls and Imines

4.2.1.4. Arylation

4.2.1.5. Carbon‐Heteroatom (C‐X) Bond Formation

4.2.2. Transition‐Metal/Chiral Cation Dual Catalysis

4.2.3. Cation‐Binding Catalysis

4.3. CHIRAL‐ANION

4.3.1. Iminium

4.3.2. Oxocarbenium

4.3.3. Carbocation

4.3.4. Miscellaneous

4.3.5. Chiral‐Anion Phase Transfer. 4.3.5.1. Halogenation

4.3.5.2. Amination

4.3.5.3. Miscellaneous Transformations

4.3.6. Transition‐Metal/Chiral‐Anion Dual Catalysis

4.3.7. Anion‐Binding Catalysis

4.3.7.1. Nonaromatic Cations

4.3.7.2. Cationic Heterocycles

4.3.7.3. Asymmetric Ring Opening of Strained Heterocycles

4.4. CONCLUSION

REFERENCES

5 ASYMMETRIC PEPTIDE CATALYSIS

5.1 INTRODUCTION

5.2 CATALYSIS BY N‐TERMINAL AMINO GROUP OF PEPTIDES

5.2.1 Enamine Catalysis

5.2.2 Iminium Ion Catalysis

5.2.3 Other Type of Peptide Catalysts That Utilize Terminal Amino Groups

5.3 CATALYSIS BY SIDE CHAIN FUNCTIONAL GROUP ON PEPTIDES

5.3.1 Histidine‐Based Peptide Catalysis

5.3.2 Aspartate/Glutamate‐Based Peptide Catalysis

5.3.3 Arg/Lys‐Based Peptide Catalysis

5.3.4 Cysteine‐Based Peptide Catalysis

5.4 CATALYSIS BY FUNCTIONAL GROUPS COVALENTLY BOUND TO PEPTIDES

5.4.1 Peptide Catalysts That Have Catalytic Center Connected to N‐Terminal

5.4.2. Peptide Catalysts That Have Catalytic Center on Side Chain of Amino Acid

5.5 PEPTIDE CATALYSIS WITH OTHER TYPES OF CATALYTIC CENTERS

5.6 CONCLUSION

REFERENCES

6 ASYMMETRIC CARBENE CATALYSIS: A BRIEF HIGHLIGHT OF DEVELOPMENTS IN THE PAST DECADE

6.1. EARLY DEVELOPMENT OF ASYMMETRIC NHC CATALYSIS

6.1.1. Early Discoveries on NHC‐Mediated Reactions: Benzoin and Related Reactions via Acyl Anion Intermediates

6.1.2. Moving from Simple Aldehydes to Enals and α‐Functionalized Aldehydes: A Key Progress During the First Decade of This Century. 6.1.2.1. Activation of Enals via Homoenolate Intermediates

6.1.2.2. Functionalization of Enals via Enolate Intermediates

6.1.2.3. Oxidation of Homoenolate to α,β‐Unsaturated Acyl Azolium Intermediates

6.1.2.4. Activation of α‐Functionalized Aldehydes for Asymmetric Reactions

6.1.3. Remaining Challenges When the Last Decade Started

6.2. ACTIVATION OF SUBSTRATES BEYOND ALDEHYDES. 6.2.1. Activations of Stable Carboxylic Esters. 6.2.1.1. α‐Carbon Activation of Carboxylic Esters

6.2.1.2. β‐sp2‐Carbon Activation of α,β‐Unsaturated Carboxylic Esters

6.2.1.3. γ‐Carbon Activation of α,β‐Unsaturated Carboxylic Esters

6.2.1.4. β‐sp3‐Carbon Activation of Saturated Esters

6.2.2. Activation of Ketenes

6.2.3. Activation of Imines

6.2.4. Activation of Other Substrates

6.3. SINGLE‐ELECTRON TRANSFER ACTIVATION AND RADICAL REACTIONS. 6.3.1. Oxidation of Aldehydes to Esters

6.3.2. Reductive Coupling Reactions Involving Nitroalkenes and Nitrobenzyl Bromides

6.3.3. Activation of Enal on β‐Carbon via SET for Asymmetric Reactions

6.3.4. Radical–Radical Coupling via NHC‐Catalyzed Activation of Aldehydes

6.3.5. Visible‐Light‐Driven Radical Reactions

6.4. NHC AS NON‐COVALENT (BRØNSTED BASE) CATALYSTS

6.5. COOPERATIVE CATALYSIS OF NHCs WITH OTHER CATALYSTS. 6.5.1. Dual Catalysis of NHC Organocatalysts and Transition Metal Catalysts

6.5.1.1. NHC and Pd

6.5.1.2. NHC and Cu

6.5.1.3. NHC and Au

6.5.1.4. NHC and Ir

6.5.1.5. Other Important Studies

6.5.2. Dual Catalysis of NHC Organocatalysts and Lewis Acid Co‐catalysts/Additives

6.5.3. Dual Catalysis of NHC Organocatalysts and Brønsted Acids

6.5.4. Dual Catalysis of NHC Organocatalysts and Other Catalysts

6.6. SYNTHETIC APPLICATIONS OF NHC CATALYSIS. 6.6.1. Kinetic Resolution and Desymmetrization

6.6.1.1. NHC‐Catalyzed Kinetic Resolutions

6.6.1.2. NHC‐Catalyzed Dynamic Kinetic Resolutions

6.6.1.3. NHC‐Catalyzed Desymmetrizations

6.6.2. NHC Catalysis in Natural Product Synthesis

6.7. SUMMARY AND OUTLOOK

REFERENCES

7 ASYMMETRIC HYPERVALENT IODINE CATALYSIS

7.1 INTRODUCTION

7.2 OXIDATIVE DEAROMATIVE COUPLING OF ARENOLS

7.3 OXIDATIVE α‐FUNCTIONALIZATION OF CARBONYL COMPOUNDS

7.4 OXIDATIVE DIFUNCTIONALIZAITON OF ALKENES

7.5 CONCLUSION AND OUTLOOK

REFERENCES

8 ASYMMETRIC VISIBLE‐LIGHT PHOTOREDOX CATALYSIS

8.1. INTRODUCTION

8.2. DUAL CATALYSIS APPROACH. 8.2.1. Lewis Base Catalysis. 8.2.1.1. Enamine Catalysis. 8.2.1.1.1. SET Reduction of Electrophilic Radical Precursors

8.2.1.1.2. SET Oxidation of Chiral Enamine

8.2.1.1.3. SET Reduction of Electrophilic Radical Precursor and Oxidation of Chiral Enamine

8.2.1.1.4. α‐Oxygenation

8.2.1.2. Iminium Catalysis

8.2.2. Hydrogen‐Bonding Catalysis

8.2.3. Brønsted Base Catalysis

8.2.4. Brønsted Acid Catalysis

8.2.5. Lewis Acid Catalysis

8.2.5.1. Activation of Substrates toward Radical Addition

8.2.5.2. Activation of Electron‐Deficient Organic Substrates toward Photocatalytic Reduction

8.2.5.3. Chiral Enolate Complex as Reductive Quencher and Acceptor of Electrophilic Radicals

8.2.6. Phase‐Transfer Catalysis

8.3. SINGLE BIFUNCTIONAL CATALYST APPROACH. 8.3.1. Chiral Organophotocatalysts. 8.3.1.1. Enamine Catalysis

8.3.1.2. Ion‐pair Catalysis

8.3.1.3. Chiral Brønsted Acid Catalysis

8.3.2. Chiral Organometallic Photocatalysts

8.3.2.1. Chiral‐at‐Metal Photocatalysts

8.3.2.2. Chiral Ligands and Photocatalysts

8.4. CONCLUSION

REFERENCES

9 ASYMMETRIC PHOTOREDOX REACTIONS WITHOUT PHOTOCATALYSTS

9.1. GENERAL INTRODUCTION

9.2 PHOTOEXCITATION OF ORGANOCATALYTIC INTERMEDIATES

9.2.1 Enamine Catalysis in EDA Complex Photoactivation

9.2.2 Phase Transfer Catalysis in EDA Complex Photoactivation

9.2.3 Iminium Ion Catalysis in EDA Complex Photoactivation

9.2.4 Direct Photoexcitation of Enamines

9.2.5 Direct Photoexcitation of Iminium Ions

9.3 PHOTOEXCITATION OF METAL‐BASED INTERMEDIATES

9.3.1 Use of Chiral Lewis Acids to Form Photoactive Intermediates

9.3.2 Photoexcitation of Organometallic Intermediates

9.4 PHOTOCHEMISTRY AND BIOCATALYSIS

9.4.1 EDA Complex Photochemistry and Enzymatic Catalysis

9.4.2 Direct Photoexcitation Strategies in Enzymatic Catalysis

9.5 METHODS BASED ON THE DIRECT EXCITATION OF SUBSTRATES

9.6 CONCLUSIONS

ACKNOWLEDGMENTS

REFERENCES

10 ENANTIOSELECTIVE PHOTOCHEMICAL [2+2] CYCLOADDITION REACTIONS

10.1. INTRODUCTION

10.2. CHIRAL ORGANOCATALYSTS

10.2.1. Xanthone and Thioxanthone

10.2.2. Thioureas

10.2.3. Brønsted Acids

10.2.4. Iminium Ions

10.3. CHIRAL METAL CATALYSTS

10.3.1. Transition Metals and Lanthanides

10.3.2. AlBr3‐Activated Oxazaborolidines

10.4. DUAL CATALYSIS

10.4.1. Electron Transfer

10.4.2. Energy Transfer. 10.4.2.1. Lewis Acid Catalysis

10.4.2.2. Eniminium Ions

10.5. CHIRAL METAL‐ORGANIC CAGES

10.6. CONCLUDING REMARKS

ACKNOWLEDGMENTS

REFERENCES

11 ASYMMETRIC C–H FUNCTIONALIZATION OF C(sp2)–H BOND

11.1. INTRODUCTION

11.2. PALLADIUM CATALYSIS

11.2.1. Phosphorus‐Based Ligands

11.2.2. Monoprotected Amino Acids as Chiral Ligands

11.2.3. Other Ligands

11.2.4. Chiral Transient Auxiliary

11.2.5. Chiral Auxiliaries

11.2.6. Cooperative Catalysis

11.2.7. Electrochemical C−H Activations

11.3. RHODIUM CATALYSIS. 11.3.1. Chiral Cpx‐Based Catalysts

11.3.2. In‐Situ Generated Chiral Complexes

11.3.2.1. Phosphine Ligand

11.3.3. Other Strategies

11.4. IRIDIUM CATALYSIS

11.4.1. C–C Bond Formations. 11.4.1.1. Phosphorus‐Based Ligands

11.4.1.2. Chiral Diene Ligand

11.4.2. C−H Borylations

11.4.3. C−H Silylations

11.5. RUTHENIUM CATALYSIS

11.5.1. Chiral Amine as the TDG

11.5.2. Chiral Acid

11.6. SCANDIUM CATALYSIS

11.7. NICKEL CATALYSIS

11.7.1. Formyl C–H Activation

11.7.2. Intramolecular Reactions

11.7.3. Intermolecular Reactions

11.8. COBALT CATALYSIS

11.8.1. Cobalt Catalysis under Reducing Conditions

11.8.2. Cobalt(III) Complexes. 11.8.2.1. Chiral Acid

11.8.2.2. Chiral Cyclopentadienyl Cobalt Complex

11.9. COPPER CATALYSIS

11.10. IRON CATALYSIS

11.10.1. Phosphine‐Based Ligands

11.10.2. N‐Heterocyclic Carbene

11.11. CONCLUSIONS

ACKNOWLEDGMENTS

REFERENCES

12 ASYMMETRIC C–H FUNCTIONALIZATION OF C(sp3)–H BOND

12.1. INTRODUCTION

12.2. C(sp3)–H BOND INSERTION BY METAL CARBENOIDS AND METAL NITRENOIDS

12.2.1. C(sp3)–H Bond Insertion of Metal Carbenoids. 12.2.1.1. Introduction

12.2.1.2. Intermolecular C(sp3)–H Functionalization

12.2.1.2.1. Insertion into Unactivated C(sp3)–H Bonds

12.2.1.2.2. Insertion into Allylic and Benzylic C(sp3)–H Bonds

12.2.1.2.3. Insertion into C(sp3)–H Bonds α to Heteroatoms

12.2.1.2.4. Insertion into C(sp3)–H Bonds β to Silicon

12.2.1.2.5. Combined C(sp3)–H Functionalization/Cope Rearrangement

12.2.1.3. Intramolecular C(sp3)–H Functionalization

12.2.2. C(sp3)–H Bond Insertion of Metal Nitrenoids. 12.2.2.1. Introduction

12.2.2.2. C(sp3)–H Functionalization with Iminoiodinanes. 12.2.2.2.1. Intermolecular C(sp3)–H Amination with Iminoiodinanes

12.2.2.2.2. Intramolecular C(sp3)–H Amination with Iminoiodinanes

12.2.2.3. C(sp3)–H Functionalization with Azides. 12.2.2.3.1. Intermolecular C(sp3)–H Amination with Azides

12.2.2.3.2. Intramolecular C(sp3)–H Amination with Azides

12.2.2.4. C(sp3)–H Functionalization with N‐(Sulfonyloxy)Carbamates

12.2.2.5. C(sp3)–H Functionalization with Dioxazolones

12.2.2.6. C(sp3)–H Functionalization with Hydroxylamine Derivatives

12.3. CONCERTED METALATION‐DEPROTONATION FOR ASYMMETRIC C(sp3)–H ACTIVATION

12.3.1. Pd(0)‐catalyzed C(sp3)–H Activation

12.3.1.1. Pd(0)‐catalyzed Enantioselective C(sp3)–C(sp2) Bond Formation

12.3.1.2. Pd(0)‐catalyzed C(sp3)–C(sp3) Bond Formation

12.3.2. Pd(II)‐catalyzed C(sp3)–H Activation

12.3.2.1. Pd(II)/Pd(0)‐catalyzed C(sp3)–H Activation

12.3.2.2. Pd(II)/Pd(IV)‐catalyzed C(sp3)–H Activation

12.3.3. Pd(II)‐catalyzed Allylic C(sp3)–H Activation

12.3.4. Other Transition Metal Catalyzed Asymmetric C(sp3)–H Activation

12.4. C(sp3)–H ACTIVATION VIA OXIDATIVE ADDITION MECHANISM. 12.4.1. Introduction

12.4.2. C–C Bond Forming Reaction. 12.4.2.1. Allylic and Benzylic C–H Bond Activation

12.4.2.2. α‐Heteroatom C–H Bond Activation

12.4.3. C(sp3)–H Borylation

12.4.4. C(sp3)–H Silylation

12.4.4.1. Rhodium‐catalyzed Silylation

12.4.4.2. Iridium‐catalyzed Silylation

12.5. CONCLUSION

REFERENCES

13 ASYMMETRIC CARBON–HALOGEN BOND FORMING REACTIONS (EXCLUDING C–H ACTIVATION PROCESSES)

13.1. INTRODUCTION

13.2. ASYMMETRIC C–F BOND FORMATION WITH METAL CATALYSTS

13.2.1. Allylic Substitution

13.2.2. Addition to Alkenes

13.2.3. Lewis Acid Catalysis

13.3. ASYMMETRIC C–F BOND FORMING REACTIONS USING CHIRAL PHASE TRANSFER CATALYSIS

13.3.1. α‐Fluorination of Simple Oxo Compounds and Their Derivatives

13.3.2. α‐Fluorination of β‐Ketoesters

13.3.3. Transformations of Olefin Bonds

13.3.4. Dearomative Fluorination of Arenes

13.3.5. Application of Neutral Phase Transfer Catalysts

13.4. ASYMMETRIC ORGANOCATALYTIC FORMATION OF C–F BONDS

13.4.1. α‐Fluorination of Aldehydes

13.4.2. α‐Fluorination of Ketones

13.4.3. α‐Fluorination of β‐Oxo Carbonyl Compounds

13.4.4. α‐Fluorination of Simple Carboxylic Acid Derivatives

13.4.5. Fluorinative Transformations of Carbon–Carbon Double Bonds

13.5. ASYMMETRIC FORMATION OF C–F BONDS VIA MISCELLANEOUS REACTIONS. 13.5.1. Fluorination Using N‐Heterocyclic Carbene Catalysis

13.5.2. Fluorination Using Chiral Iodoarene Difluorides

13.6. ENANTIOSELECTIVE CHLORINATION

13.6.1. Organocatalysis. 13.6.1.1. Chlorination of Carbonyl Compounds

13.6.1.2. Dichlorination of Alkenes

13.6.1.3. Chlorofunctionalization of Alkenes

13.6.2. Strategies Based on Chiral Metal Complexes. 13.6.2.1. Chlorination of β‐Ketoesters

13.6.2.2. Chlorination of Alkenes

13.7. ENANTIOSELECTIVE BROMINATION

13.7.1. Strategies Based on Chiral Metal Complexes

13.7.1.1. Bromination of Alkenes

13.7.1.2. Bromoaminocyclization Reactions

13.7.2. Strategies Based on the Use of Chiral Auxiliaries. 13.7.2.1. Bromolactonization Reactions

13.7.3. Strategies Based on the Use of Organocatalysts. 13.7.3.1. Bromocyclization Reactions

13.7.3.2. Bromofunctinalization of Carbonyl Compounds

13.8. ASYMMETRIC CARBON–IODINE BOND FORMATION

13.8.1. Iodoaminations

13.8.2. Iodolactonizations

13.9. CONCLUSIONS

ACKNOWLEDGMENTS

REFERENCES

14 ENZYME‐CATALYZED ASYMMETRIC SYNTHESIS

14.1. TYPES OF BIOCATALYZED PROCESSES

14.2. KINETIC RESOLUTION

14.3. DYNAMIC PROCESSES IN BIOCATALYZED ASYMMETRIC SYNTHESIS

14.4. DERACEMIZATIONS

14.5. PARALLEL KINETIC RESOLUTIONS

14.6. DESYMMETRIZATION

14.7. MULTI(CHEMO)ENZYMATIC REACTIONS

14.8. CONCLUSIONS AND OUTLOOK

REFERENCES

15 ASYMMETRIC HYDROGENATION

15.1. INTRODUCTION

15.2. ASYMMETRIC HYDROGENATION OF FUNCTIONALIZED OLEFINS. 15.2.1. Introduction

15.2.2. Rhodium Catalysts

15.2.3. Cobalt and Nickel Catalysts

15.2.4. Iridium Catalysts

15.2.5. Ruthenium Catalysts

15.3. ASYMMETRIC HYDROGENATION OF UNFUNCTIONALIZED OLEFINS

15.3.1. Iridium‐Catalyzed Hydrogenations

15.3.1.1. Model Substrate: (E)‐2‐Methyl‐2‐Stilbene

15.3.1.2. Trisubstituted Alkenes and Dienes

15.3.1.3. Terminal (1,1,‐Disubstituted) Alkenes

15.3.1.4. Tetrasubstituted Alkenes

15.3.2. Rhodium‐Catalyzed Hydrogenations

15.3.3. Cobalt‐Catalyzed Hydrogenations

15.4. ASYMMETRIC HYDROGENATION OF KETONES

15.4.1. Ruthenium Catalysts. 15.4.1.1. Diphosphine‐Diamine Catalytic Systems

15.4.1.2. Arene‐Diamine Catalytic Systems

15.4.1.3. Other Ruthenium Catalytic Systems

15.4.2. Rhodium Catalysts

15.4.3. Iridium Catalysts

15.4.4. Iron Catalysts

15.4.5. Manganese and Cobalt Catalysts

15.5. ASYMMETRIC HYDROGENATION OF IMINES

15.5.1. Heterocyclic Imines and Nitrogenated Heteroaromatics

15.5.2. Acyclic Imines

15.5.3. Reductive Amination

15.6. CONCLUSIONS

REFERENCES

16 ASYMMETRIC NUCLEOPHILIC ADDITION TO KETONES AND KETIMINES AND CONJUGATE ADDITION REACTIONS

16.1. INTRODUCTION

16.2. ASYMMETRIC NUCLEOPHILIC ADDITION TO KETONES

16.2.1. Asymmetric Nucleophilic Addition of Grignard Reagents to Ketones

16.2.2. Asymmetric Nucleophilic Addition of Organoboron Reagents to Ketones

16.2.2.1. Arylation Reactions

16.2.2.2. Allylation Reactions

16.2.2.3. Propargylation Reactions

16.2.3. Asymmetric Nucleophilic Addition of Organotitanium Reagents to Ketones

16.3. ASYMMETRIC NUCLEOPHILIC ADDITION TO KETIMINES

16.3.1. Asymmetric Nucleophilic Addition of Grignard Reagents to Ketimines

16.3.2. Asymmetric Nucleophilic Addition of Organoboron Reagents to Ketimines

16.3.2.1. Rh‐Catalyzed Enantioselective Additions of Organoboron Reagents to Ketimines

16.3.2.2. Pd‐Catalyzed Enantioselective Additions of Organoboron Reagents to Ketimines

16.3.2.3. Other Transition‐Metal‐Catalyzed Enantioselective Additions of Organoboron Reagents to Ketimines

16.4. CATALYTIC ASYMMETRIC CONJUGATE ADDITION

16.4.1. Asymmetric Conjugate Addition (ACA) of Grignard Reagents

16.4.1.1. ACA to Alkenyl‐Heteroarenes

16.4.1.2. ACA to α,β‐Unsaturated Carboxamides and Carboxylic Acids

16.4.1.3. ACA to Heterocyclic Michael Acceptors

16.4.2. Asymmetric Conjugate Addition of Organozinc Reagents

16.4.2.1. ACA to Cyclic Enones

16.4.2.2. ACA to Acyclic Enones

16.4.2.3. ACA to Nitroalkenes

16.4.3. Asymmetric Conjugate Addition of Organozirconium Reagents

16.4.4. Asymmetric Conjugate Addition of Organoborane Reagents

16.4.4.1. ACA to α,β‐Unsaturated Ketimines

16.4.4.2. ACA to α,β‐Unsaturated Enones

16.4.4.3. ACA to Nitroalkenes

16.4.4.4. ACA to α,β‐Unsaturated Esters

16.4.4.5. ACA to Other Michael Acceptors

16.5. CONCLUSIONS

ACKNOWLEDGMENTS

REFERENCES

17 ASYMMETRIC ALLYLIC ALKYLATION, ALLYLATION, AND RELATED REACTIONS

17.1. INTRODUCTION AND SCOPE

17.2. PALLADIUM‐CATALYZED ENANTIOSELECTIVE ALLYLIC ALKYLATIONS

17.2.1. Pd‐Catalyzed Asymmetric Allylic and Benzylic Substitution with Stabilized Carbon and Heteroaromatic Nucleophiles

17.2.1.1. Monodentate P‐ligands

17.2.1.2. C2‐Symmetric P,P‐ligands

17.2.1.3. Bidentate P,N(sp2)‐ligands

17.2.2. Pd‐Catalyzed Asymmetric Allylic Substitution with Non‐Stabilized C‐nucleophiles

17.2.3. Pd‐Catalyzed Decarboxylative Allylic Substitution

17.2.4. Pd‐Catalyzed Asymmetric Oxidative Allylic Alkylation

17.3. NICKEL‐ AND PLATINUM‐CATALYZED ALLYLIC ALKYLATION. 17.3.1. Ni‐Catalyzed Allylic Alkylation

17.3.2. Pt‐Catalyzed Allylic Alkylation

17.4. MOLYBDENUM‐ AND TUNGSTEN‐CATALYZED ENANTIOSELECTIVE ALLYLIC ALKYLATION. 17.4.1. Mb‐Catalyzed Allylic Alkylation

17.4.2. W‐Catalyzed Allylic Alkylation

17.5. IRON‐ AND RUTHENIUM‐CATALYZED ALLYLIC ALKYLATION. 17.5.1. Fe‐Catalyzed Allylic Alkylation

17.5.2. Ru‐Catalyzed Allylic Alkylation

17.6. RHODIUM‐CATALYZED ENANTIOSELECTIVE ALLYLIC ALKYLATION

17.7. IRIDIUM‐CATALYZED ENANTIOSELECTIVE ALLYLIC ALKYLATION

17.7.1. Ir‐Catalyzed Allylic Alkylation with Stabilized Nucleophiles

17.7.2. Ir‐Catalyzed Allylic Alkylation with Non‐Stabilized Nucleophiles

17.7.3. Ir‐Catalyzed Allylic Alkylation with Enamine Catalysis

17.7.4. Ir‐Catalyzed Allylic Alkylation with Arene Nucleophiles

17.7.5. Ir‐Catalyzed Allylic Alkylation with Olefin Nucleophiles

17.7.6. Ir‐Catalyzed Allylic Alkylation with Organometallic Nucleophiles

17.7.7. Ir‐Catalyzed Allylic Alkylation with Umpolung Reactivity of Imines

17.8. COPPER‐CATALYZED ENANTIOSELECTIVE ALLYLIC ALKYLATION

17.8.1. Allylic Alkylation of Grignard Reagents

17.8.2. Allylic Alkylation of Organolithium Reagents

17.8.3. Allylic Alkylation of Organoaluminum Reagents

17.8.4. Allylic Alkylation of Organoboron Reagents

17.8.5. Allylic Alkylation of Organozirconium Reagents

17.8.6. Other Carbon Nucleophiles

17.9. COBALT‐CATALYZED ENANTIOSELECTIVE ALLYLIC ALKYLATION

17.10. CONCLUDING REMARKS

REFERENCES

18 ASYMMETRIC CARBOMETALLATIONS INCLUDING CARBOCYCLIZATIONS

18.1. INTRODUCTION

18.2. CARBOMETALLATIONS WITH MAIN GROUP METALS

18.2.1. Carboaluminations

18.2.2. Carbomagnesiations and Carbozincations

18.3. CARBOMETALLATIONS WITH TRANSITION METALS

18.3.1. Carbopalladations

18.3.2. Carbonickelations

18.3.3. Carborhodations

18.3.4. Carbocobaltations

18.4. CONCLUSION

REFERENCES

19 ASYMMETRIC SYNTHESIS OF AXIALLY CHIRAL COMPOUNDS

19.1. INTRODUCTION

19.2. METAL CATALYSIS. 19.2.1. Biaryl Atropisomers. 19.2.1.1. Formation of C(aryl)‐C(aryl) Bond. 19.2.1.1.1. Transition Metal‐Catalyzed Cross‐Coupling

19.2.1.1.2. Direct C‐H Arylation

19.2.1.1.3. Dehydrogenative Cross‐Coupling

19.2.1.2. De Novo Arene Formation

19.2.1.3. Atroposelective Functionalization of Prochiral/Racemic Biaryls. 19.2.1.3.1. Asymmetric Ring‐Opening Transformation

19.2.1.3.2. Ortho‐C‐H Functionalization

19.2.1.3.3. Functionalization of Ortho‐Substituents

19.2.2. Heterobiaryl Atropisomers. 19.2.2.1. Stereoselective Formation of Aryl‐Heteroaryl Bond

19.2.2.2. De Novo Heteroarene Formation

19.2.2.3. Atroposelective Functionalization of Prochiral/Racemic Heterobiaryls. 19.2.2.3.1. C‐H Functionalization

19.2.2.3.2. Functionalization of Ortho‐Substituent

19.2.2.3.3. Dynamic Kinetic Asymmetric Transformation (DYKAT)

19.2.3. Nonbiaryl Atropisomers. 19.2.3.1. Stereogenic C‐N Axis. 19.2.3.1.1. Stereoselective Formation of C‐N Bond

19.2.3.1.2. Atroposelective Functionalization on Preformed Nonbiaryl C‐N Scaffold

19.2.3.1.3. Atroposelective N‐Annulation

19.2.3.2. Stereogenic C‐C Axis. 19.2.3.2.1. Atroposelective C(aryl)‐C(alkenyl) Bond Formation

19.2.3.2.2. Alkyne Annulation

19.2.3.2.3. Atroposelective Functionalization of Aryl‐Alkene scaffold

19.3. ORGANOCATALYSIS. 19.3.1. Biaryl Atropisomers. 19.3.1.1. Formation of C(aryl)‐C(aryl) Bond

19.3.1.2. De Novo Arene Formation

19.3.1.3. Atroposelective Functionalization of Prochiral/Racemic Biaryls. 19.3.1.3.1. DKR

19.3.1.3.2. Desymmetrization

19.3.1.3.3. KR

19.3.2. Heterobiaryl Atropisomers. 19.3.2.1. Stereoselective Formation of Aryl‐Heteroaryl Bond

19.3.2.2. De Novo Arene Formation. 19.3.2.2.1. N‐Heteroatropisomers

19.3.2.2.2. O‐Heteroatropisomers

19.3.2.3. Atroposelective Functionalization of Prochiral/Racemic Heterobiaryls

19.3.3. Nonbiaryl Atropisomers. 19.3.3.1. Stereogenic C‐N Axis. 19.3.3.1.1. Stereoselective Formation of C‐N Bond

19.3.3.1.2. Atroposelective N‐Annulation

19.3.3.1.3. Atroposelective Functionalization on Preformed Nonbiaryl C‐N Scaffold

19.3.3.2. Stereogenic C‐C Axis: Aromatic Amides. 19.3.3.2.1. De Novo Arene Formation

19.3.3.2.2. Atroposelective Functionalization of Aromatic Amides

19.3.3.3. Stereogenic C‐C Axis: Aryl Alkenes. 19.3.3.3.1. Atroposelective C(aryl)‐C(alkenyl) Bond Formation

19.3.3.3.2. Alkyne Annulation

19.3.3.3.3. Addition reaction of alkynes

19.3.3.3.4. Atroposelective Functionalization of Aryl‐Alkene Scaffold

19.4. ENZYMATIC CATALYSIS. 19.4.1. Biaryl Atropisomers

19.4.2. Heteorobiaryl Atropisomers

19.5. CONCLUSION

REFERENCES

20 ASYMMETRIC SYNTHESIS OF PLANAR CHIRAL AND HELICALLY CHIRAL COMPOUNDS

20.1. INTRODUCTION

20.2. ENANTIOSELECTIVE SYNTHESIS OF PLANAR CHIRAL COMPOUNDS

20.2.1. Enantioselective Synthesis of Planar Chiral Ferrocenes. 20.2.1.1. Pioneering Works

20.2.1.2. Pd‐Catalyzed Intermolecular Reactions Using Amino Acid‐Derived Ligands

20.2.1.3. Intermolecular Reactions Using Other Metal Catalysts

20.2.1.4. Pd‐Catalyzed Intramolecular Cross‐Coupling

20.2.1.5. Rh‐ and Ni‐Catalyzed Dehydrogenative Couplings

20.2.1.6. Au‐ and Pt‐Catalyzed Cycloisomerizations

20.2.2. Enantioselective Synthesis of Planar Chiral Arene‐Chromium Complex

20.2.3. Enantioselective Synthesis of Planar Chiral Cyclophane. 20.2.3.1. Rh‐Catalyzed [2+2+2] Cycloaddition

20.2.3.2. Other Protocols: Coupling and Ortho‐Lithiation

20.2.4. Enantioselective Synthesis of Planar Chiral Cyclic trans‐Alkenes

20.3. ENANTIOSELECTIVE SYNTHESIS OF HELICALLY CHIRAL COMPOUNDS

20.3.1. [2+2+2] Cycloaddition of Alkynes. 20.3.1.1. Enantioselective Synthesis of Carbohelicene Derivatives

20.3.1.2. Enantioselective Synthesis of Heterohelicene Derivatives

20.3.2. Au(I)‐Catalyzed Cycloisomerization of Arylalkynes

20.3.3. Other Protocols

20.4. SUMMARY

REFERENCES

21 ASYMMETRIC POLYMERIZATION

21.1 INTRODUCTION

21.2 ENANTIOSELECTIVE POLYMERIZATION. 21.2.1 Preparation of Optically Active Polyolefins. 21.2.1.1 Polymerization of Vinyl Olefins

21.2.1.2 Polymerization of Diolefins

21.2.1.3 Polymerization of Cyclic Olefins

21.2.2 Preparation of Chiral Polyketones from the Copolymerization of Olefins and CO

21.2.3. Enantioselective Epoxide Homopolymerizations and Copolymerizations

21.2.3.1 Preparation of Chiral Polyethers via Enantioselective Epoxide Homopolymerization

21.2.3.2 Preparation of Chiral Polycarbonates

21.2.3.2.1. Kinetic Resolution Copolymerization of racemic Epoxides with CO2

21.2.3.2.2. Asymmetric Polymerization of Meso‐Epoxides with CO2

21.2.3.3 Preparation of Chiral Poly(monothiocarbonate)s

21.2.3.4 Preparation of Chiral Polyesters

21.2.3.4.1. Enantioselective Polymerization of Lactides and Lactones

21.2.3.4.2. Asymmetric Copolymerization of Epoxides and Cyclic Anhydrides

21.2.4 Other Asymmetric Polymerization Reactions. 21.2.4.1 Asymmetric Condensation Polymerization

21.2.4.2 Oxidative‐Coupling Polymerization

21.3 HELIX‐SENSE‐SELECTIVE POLYMERIZATIONS

21.4 SUMMARY AND OUTLOOK

REFERENCES

22 CONTINUOUS‐FLOW CHEMISTRY IN CATALYTIC ASYMMETRIC SYNTHESIS

22.1. INTRODUCTION

22.2. OVERVIEW OF CATALYTIC PROCESSES IN FLOW ORGANIC SYNTHESIS

22.3. ENANTIOSELECTIVE C–C BOND‐FORMING REACTIONS THROUGH 1,4‐ADDITION REACTIONS

22.4. ENANTIOSELECTIVE C–C BOND‐FORMING REACTIONS THROUGH 1,2‐ADDITION REACTIONS

22.5. ENANTIOSELECTIVE C–C BOND FORMATION THROUGH CYCLOADDITION REACTIONS

22.6. ENANTIOSELECTIVE C–C BOND‐FORMING REACTIONS THROUGH HYDROFORMYLATION

22.7. ENANTIOSELECTIVE C–X BOND‐FORMING REACTIONS THROUGH OXIDATIVE PROCESSES

22.8. ENANTIOSELECTIVE REDUCTION OF DOUBLE BONDS THROUGH CONTINUOUS‐FLOW SYSTEMS

22.9. CONCLUSION AND OUTLOOK

REFERENCES

INDEX

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Fourth Edition

.....

Schneider reported a domino‐type reaction between diazoesters and ortho‐quinone methides generated in situ to furnish densely functionalized chromans with three contiguous stereogenic centers. A transition metal and a Brønsted acid catalyst 6b acted synergistically to produce a transient oxonium ylide and ortho‐quinone methide, which underwent subsequent coupling in a conjugate‐addition‐hemiacetalization event to afford chromans (Scheme 2.47) [99].

Scheme 2.47. Synergistic rhodium/phosphoric acid catalysis.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Catalytic Asymmetric Synthesis
Подняться наверх