Poly(lactic acid)

Poly(lactic acid)
Автор книги: id книги: 2381059     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 24139,5 руб.     (237,41$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Химия Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119767466 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

The second edition of a key reference, fully updated to reflect new research and applications Poly(lactic acid) – PLA, biodegradable polymers derived from lactic acid, have become vital components of a sustainable society. Eco-friendly PLA polymers are used in numerous industrial applications ranging from packaging applications to medical implants and to wastewater treatment. The global PLA market is predicted to expand significantly over the next decade due to increasing demand for compostable and recyclable materials produced from renewable resources. Poly(lactic acid) Synthesis, Structures, Properties, Processing, Applications, and End of Life provides comprehensive coverage of the basic chemistry, production, and industrial use of PLA. Contributions from an international panel of experts review specific processing methods, characterization techniques, and various applications in biomedicine, textiles, packaging, and environmental engineering. Now in its second edition, this fully up-to-date volume features new and revised chapters on 3D printing, the mechanical and chemical recycling of PLA, PLA stereocomplex crystals, PLA composites, the environmental footprint of PLA, and more. Highlights the biodegradability, recycling, and sustainability benefits of PLA Describes processing and conversion technologies for PLA, such as injection molding, extrusion, blending, and thermoforming Covers various aspects of lactic acid/lactide monomers, including physicochemical properties and production Examines different condensation reactions and modification strategies for enhanced polymerization of PLA Discusses the thermal, rheological, and mechanical properties of PLA Addresses degradation and environmental issues of PLA, including photodegradation, radiolysis, hydrolytic degradation, biodegradation and life cycle assessment Poly(lactic acid) Synthesis, Structures, Properties, Processing, Applications, and End of Life, Second Edition remains essential reading for polymer engineers, materials scientists, polymer chemists, chemical engineers, industry professionals using PLA, and scientists and advanced students engineers interested in biodegradable plastics.

Оглавление

Группа авторов. Poly(lactic acid)

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

POLY(LACTIC ACID) Synthesis, Structures, Properties, Processing, Applications, and End of Life

LIST OF CONTRIBUTORS

PREFACE

REFERENCE

AUTHOR BIOGRAPHIES

1 PRODUCTION AND PURIFICATION OF LACTIC ACID AND LACTIDE

1.1 INTRODUCTION

1.2 LACTIC ACID. 1.2.1 History of Lactic Acid

1.2.2 Physical Properties of Lactic Acid

1.2.3 Chemistry of Lactic Acid

1.2.4 Production of Lactic Acid by Fermentation

1.2.4.1 The Microbes

1.2.4.2 Stereochemical Purity

1.2.4.3 Nutrients

1.2.4.4 Neutralization

1.2.4.5 Carbohydrates for Lactic Acid Production

1.2.4.6 Starch

1.2.4.7 Lignocellulose

1.2.4.8 Batch versus Continuous Fermentation

1.2.5 Downstream Processing/Purificationof Lactic Acid

1.2.5.1 Purification Methods for Lactic Acid

1.2.5.2 Gypsum‐Free Lactic Acid Production

1.2.5.3 Modern Industrial Methods

1.2.6 Quality/Specifications of Lactic Acid

1.3 LACTIDE. 1.3.1 Physical Properties of Lactide

1.3.2 Production of Lactide

1.3.2.1 Prepolymerization

1.3.2.2 Lactide Synthesis During Prepolymerization

1.3.2.3 Basic Research on Batch Lactide Synthesis and the Catalysts Used

1.3.2.4 Continuous Synthesis

1.3.3 Purification of Lactide

1.3.4 Quality and Specifications of Polymer‐Grade Lactide

1.3.4.1 Role of the Catalyst and Initiator in Lactide Polymerization

1.3.4.2 Alcohols

1.3.4.3 Carboxylic Acids

1.3.4.4 Metals

1.3.4.5 Stereochemical Purity

1.3.5 Concluding Remarks on Polymer‐Grade Lactide

REFERENCES

2 AQUEOUS SOLUTIONS OF LACTIC ACID

2.1 INTRODUCTION

2.2 STRUCTURE OF LACTIC ACID

2.3 VAPOR PRESSURE OF ANHYDROUS LACTIC ACID AND LACTIDE

2.4 OLIGOMERIZATION IN AQUEOUS SOLUTIONS

2.5 EQUILIBRIUM DISTRIBUTION OF OLIGOMERS

2.6 VAPOR–LIQUID EQUILIBRIUM

2.7 DENSITY OF AQUEOUS SOLUTIONS

2.8 VISCOSITY OF AQUEOUS SOLUTIONS

2.9 SUMMARY

REFERENCES

3 INDUSTRIAL PRODUCTION OF HIGH‐MOLECULAR‐WEIGHT POLY(LACTIC ACID)

3.1 INTRODUCTION

3.2 LACTIC‐ACID‐BASED POLYMERS BY POLYCONDENSATION

3.2.1 Direct Condensation

3.2.2 Solid‐State Polycondensation

3.2.3 Azeotropic Dehydration

3.3 LACTIC ACID‐BASED POLYMERS BY CHAIN EXTENSION. 3.3.1 Chain Extension with Diisocyanates

3.3.1.1 Chain‐Extension Reaction Parameters

3.3.1.2 Properties of Poly(Ester‐Urethane)s

3.3.2 Chain Extension with Bis‐2‐Oxazoline

3.3.2.1 Chain‐Extension Reaction Parameters

3.3.2.2 Properties of Poly(Ester‐Amide)s

3.3.3 Dual Linking Processes

3.3.4 Chain Extension with Bis‐Epoxies

3.4 LACTIC‐ACID‐BASED POLYMERS BY RING‐OPENING POLYMERIZATION

3.4.1 Polycondensation Processes

3.4.2 Lactide Manufacturing

3.4.2.1 Solvent‐Assisted Purification

3.4.2.2 Melt Crystallization

3.4.2.3 Separation in the Gas Phase

3.4.2.4 Separation by Cooling

3.4.3 Ring‐Opening Polymerization

3.4.3.1 Reactor Design

3.4.3.2 Catalyst Systems

3.4.3.3 Post‐Polymerization Treatments

REFERENCES

4 DESIGN AND SYNTHESIS OF DIFFERENT TYPES OF POLY(LACTIC ACID)/POLYLACTIDE COPOLYMERS

4.1 INTRODUCTION

4.2 COMONOMERS WITH LACTIC ACID/LACTIDE. 4.2.1 Glycolic Acid/Glycolide

4.2.2 Poly(Alkylene Glycol)

4.2.3 δ‐Valerolactone and β‐Butyrolactone

4.2.4 ε‐Caprolactone

4.2.5 1,5‐Dioxepan‐2‐One

4.2.6 Trimethylene Carbonate

4.2.7 Poly(N‐Isopropylacrylamide)

4.2.8 Alkylthiophene (P3AT)

4.2.9 Polypeptide

4.3 FUNCTIONALIZED PLA

4.4 MACROMOLECULAR DESIGN OF LACTIDE‐BASED COPOLYMERS

4.4.1 Graft Copolymers

4.4.2 Star‐Shaped Copolymers

4.4.3 Periodic Copolymers

4.5 PROPERTIES OF LACTIDE‐BASED COPOLYMERS

4.6 DEGRADATION OF LACTIDE HOMO‐ AND COPOLYMERS

4.6.1 Drug Delivery from Lactide‐Based Copolymers

4.6.2 Radiation Effects

REFERENCES

5 PREPARATION, STRUCTURE, AND PROPERTIES OF STEREOCOMPLEX‐TYPE POLY(LACTIC ACID)

5.1 INTRODUCTION

5.2 STEREOCOMPLEXATION IN POLY(LACTIC ACID)

5.3 CRYSTAL STRUCTURE OF sc‐PLA

5.4 FORMATION OF STEREOBLOCK PLA

5.4.1 Single‐Step Process

5.4.2 Stepwise ROP

5.4.3 Chain Coupling Method. 5.4.3.1 Chain Extension

5.4.3.2 Click Chemistry

5.4.3.3 Polycondensation

5.5 STEREOCOMPLEXATION IN COPOLYMERS

5.5.1 Stereocomplexation in Random and Alternating Lactic Acid or Lactide‐Based Polymers

5.5.2 sc‐PLA–PCL Copolymers

5.5.3 sc‐PLA–PEG Copolymers

5.6 STEREOCOMPLEX PLA‐BASED COMPOSITES

5.7 Advances in Stereocomplex‐PLA

5.8 CONCLUSIONS

REFERENCES

6 STRUCTURES AND PHASE TRANSITIONS OF PLA AND ITS RELATED POLYMERS

6.1 INTRODUCTION

6.2 STRUCTURAL STUDY OF PLA. 6.2.1 Preparation of Crystal Modifications of PLA

6.2.2 Crystal Structure of the α Form

6.2.3 Crystal Structure of the δ Form

6.2.4 Crystal Structure of the β Form

6.2.5 Structure of the Mesophase

6.3 THERMALLY INDUCED PHASE TRANSITIONS

6.3.1 Phase Transition in Cold Crystallization

6.3.2 Phase Transition in the Melt Crystallization

6.3.3 Mechanically Induced Phase Transition

6.4 MICROSCOPICALLY‐VIEWED STRUCTURE‐MECHANICAL PROPERTIES OF PLA

6.5 STRUCTURE AND FORMATION OF PLLA/PDLA STEREOCOMPLEX. 6.5.1 Reconsideration of the Crystal Structure

6.5.2 Experimental Support of P3 Structure Model

6.5.3 Formation Mechanism of Stereocomplex

6.6 PHB AND OTHER BIODEGRADABLE POLYESTERS

6.6.1 Poly(3‐Hydroxybutyrate) (PHB) 6.6.1.1 Crystal Structure of α Form

6.6.1.2 Crystal Structure of β Form

6.6.1.3 Transition Mechanism to the β Form

6.6.2 Polyethylene Adipate (PEA)

6.7 FUTURE PERSPECTIVES

ACKNOWLEDGEMENTS

REFERENCES

7 OPTICAL AND SPECTROSCOPIC PROPERTIES

7.1 INTRODUCTION

7.2 ABSORPTION AND TRANSMISSION OF UV–VIS RADIATION

7.3 REFRACTIVE INDEX

7.4 SPECIFIC OPTICAL ROTATION

7.5 INFRARED AND RAMAN SPECTROSCOPY

7.5.1 Infrared Spectroscopy

7.5.1.1 Structural Analysis: Band Assignment

7.5.1.2 Surface Characterization

7.5.1.3 Crystallization Studies

7.5.2 Raman Spectroscopy

7.6 1H AND 13C NMR SPECTROSCOPY

REFERENCES

8 CRYSTALLIZATION AND THERMAL PROPERTIES*

8.1 INTRODUCTION

8.2 CRYSTALLINITY AND CRYSTALLIZATION

8.3 CRYSTALLIZATION REGIME

8.4 FIBERS

8.5 COMMERCIAL POLYMERS AND PRODUCTS

8.6 DEGRADATION AND CRYSTALLINITY

ACKNOWLEDGMENTS

REFERENCES

Note

9 RHEOLOGY OF POLY(LACTIC ACID)

9.1 INTRODUCTION

9.2 FUNDAMENTAL CHAIN PROPERTIES FROM DILUTE SOLUTION VISCOMETRY

9.2.1 Unperturbed Chain Dimensions

9.2.2 Real Chains

9.2.3 Solution Viscometry

9.2.4 Viscometry of PLA

9.3 PROCESSING OF PLA: GENERAL CONSIDERATIONS

9.4 MELT RHEOLOGY: AN OVERVIEW

9.5 PROCESSING OF PLA: RHEOLOGICAL PROPERTIES

9.6 CONCLUSIONS

APPENDIX 9.A DESCRIPTION OF THE SOFTWARE

REFERENCES

10 MECHANICAL PROPERTIES

10.1 INTRODUCTION

10.2 GENERAL MECHANICAL PROPERTIES AND MOLECULAR WEIGHT EFFECT. 10.2.1 Tensile and Flexural Properties

10.2.2 Impact Resistance

10.2.3 Hardness

10.3 TEMPERATURE EFFECT

10.4 RELAXATION AND AGING

10.5 ANNEALING

10.6 ORIENTATION

10.7 STEREOREGULARITY

10.8 SELF‐REINFORCED PLA COMPOSITES

10.9 PLA NANOCOMPOSITES

10.10 COPOLYMERIZATION

10.11 PLASTICIZATION

10.12 PLA BLENDS

10.13 CONCLUSIONS

REFERENCES

11 MASS TRANSFER

11.1 INTRODUCTION

11.2 BACKGROUND ON MASS TRANSFER IN POLYMERS

11.3 MASS TRANSFER PROPERTIES OF NEAT PLA FILMS

11.3.1 Mass Transfer of Gases

11.3.1.1 Gas Permeability

11.3.1.1.1 Factors Affecting Gas Permeability

11.3.1.2 Gas Diffusion

11.3.1.2.1 Factors Affecting Gas Diffusion

11.3.1.3 Gas Solubility

11.3.1.3.1 Factors Affecting Gas Solubility

11.3.1.4 Remarks for Gases

11.3.2 Mass Transfer of Oxygen

11.3.2.1 Factors Affecting Mass Transfer of Oxygen

11.3.2.2 Remarks for Oxygen

11.3.3 Mass Transfer of Water Vapor

11.3.3.1 Factors Affecting Mass Transfer of Water Vapor

11.3.3.2 Remarks for Water Vapor

11.3.4 Mass Transfer of Organic Vapors

11.3.4.1 Factors Affecting Mass Transfer of Organic Vapors

11.3.4.2 Remarks for Organic Vapors

11.4 MASS TRANSFER PROPERTIES OF MODIFIED PLA

11.4.1 PLA Stereocomplex and PLA Blends

11.4.2 PLA Nanocomposites

11.4.3 Other PLA Modifications

11.4.4 PLA in Other Forms

11.5 FINAL REMARKS

ACKNOWLEDGMENTS

REFERENCES

12 MIGRATION AND INTERACTION WITH CONTACT MATERIALS

12.1 INTRODUCTION

12.2 MIGRATION PRINCIPLES

12.3 LEGISLATION

12.4 MIGRATION AND TOXICOLOGICAL DATA OF LACTIC ACID, LACTIDE, DIMERS, AND OLIGOMERS

12.4.1 Lactic Acid

12.4.1.1 Migration to Aqueous Simulants

12.4.1.2 Migration to Acidic Simulants

12.4.1.3 Migration to Fatty Food Simulants

12.4.1.4 Migration to Liquor Simulants

12.4.2 Lactide

12.4.3 Oligomers

12.5 EDI OF LACTIC ACID

12.6 OTHER POTENTIAL MIGRANTS FROM PLA

12.7 CONCLUSIONS

REFERENCES

13 PROCESSING OF POLY(LACTIC ACID)

13.1 INTRODUCTION

13.2 PROPERTIES OF PLA RELEVANT TO PROCESSING

13.3 MODIFICATION OF PLA PROPERTIES BY PROCESS AIDS AND OTHER ADDITIVES

13.4 DRYING AND CRYSTALLIZING

13.5 EXTRUSION

13.6 INJECTION MOLDING

13.7 FILM AND SHEET CASTING

13.8 STRETCH BLOW MOLDING

13.9 EXTRUSION BLOWN FILM

13.10 THERMOFORMING

13.11 MELT SPINNING

13.12 SOLUTION SPINNING

13.13 ELECTROSPINNING

13.14 FILAMENT EXTRUSION AND 3D‐PRINTING

13.15 CONCLUSION: PROSPECTS OF PLA POLYMERS

REFERENCES

14 BLENDS

14.1 INTRODUCTION

14.2 PLA NONBIODEGRADABLE POLYMER BLENDS

14.2.1 Polyolefins

14.2.1.1 PLA‐PE Blends

14.2.1.2 PLA‐PP Blends

14.2.2 Vinyl and Vinylidene Polymers and Copolymers. 14.2.2.1 Polystyrene/PLA Blends

14.2.2.2 Poly(Vinyl Phenol)/PLA Blends

14.2.2.3 Poly(Ethylene‐co‐Vinyl Acetate)/PLA Blends

14.2.2.4 Poly(Ethylene‐co‐Vinyl Alcohol)/PLA Blends

14.2.2.5 Acrylonitrile–Butadiene–Styrene Copolymer/PLA Blends

14.2.3 Rubbers and Elastomers. 14.2.3.1 Core‐Shell Rubber PLA Blends

14.2.3.2 Poly(cis‐1,4‐Isoprene)/PLA Blends

14.2.3.3 Poly(Ethylene Octene) Copolymer/PLA Blends

14.2.4 PLA/PMMA Blends

14.3 PLA/BIODEGRADABLE POLYMER BLENDS

14.3.1 Polyanhydrides

14.3.1.1 Poly(Sebacic Anhydride)/PLA Blends and Poly(Anhydride‐co‐Amide)/PLA Blends

14.3.2 Vinyl and Vinylidene Polymers and Copolymers. 14.3.2.1 Poly(Vinyl Alcohol)/PLA Blends

14.3.2.2 Poly(Vinyl Acetate)/PLA Blends

14.3.2.3 Poly(Vinyl Acetate‐co‐Vinyl Alcohol)/PLA Blends

14.3.2.4 Poly(Vinyl Pyrrolidone)/PLA Blends

14.3.3 Aliphatic Polyesters and Copolyesters. 14.3.3.1 Poly(ε‐Caprolactone)/PLA Blends

14.3.3.2 Polyhydroxyalkanoate/PLA Blends

14.3.3.3 Poly(Butylene Succinate)/PLA Blends

14.3.3.4 Poly(Butylene Succinate‐co‐Adipate)/PLA Blends

14.3.3.5 Poly(Butylene Succinate‐co‐L‐Lactate)/PLA Blends

14.3.3.6 Poly(Butylene Succinate‐co‐Butylene Carbonate)/PLA Blends

14.3.3.7 Poly(Glycolic Acid)/PLA Blends

14.3.3.8 Poly(Lactic‐co‐Glycolic Acid)/PLA Blends

14.3.4 Aliphatic–Aromatic Copolyesters. 14.3.4.1 Poly(Butylene Adipate‐co‐Terephthalate)/PLA Blends

14.3.4.2 Poly(Tetramethylene Adipate‐co‐Terephthalate)/PLA Blends

14.3.5 Elastomers and Rubbers. 14.3.5.1 Natural Rubber and Epoxidized Natural Rubber PLA Blends

14.3.5.2 Polyamide Elastomer/PLA Blends

14.3.5.3 Poly(Ether)Urethane Elastomer/PLA Blends

14.3.5.4 Poly(ε‐CL/L‐Lac)/PLA Blends, Polytrimethylene Carbonate/PLA Blends, and Poly(TMC/ε‐CL)/PLA Blends

14.3.6 Poly(Ester Amide)/PLA Blends

14.3.7 Polyethers and Copolymers

14.3.7.1 Poly(Ethylene Glycol)/PLA Blends

14.3.7.2 Poly(Ethylene Oxide)/PLA Blends

14.3.7.3 Poly(Ethylene Oxide)‐b‐Poly(Propylene Oxide)b‐Poly(Ethylene Oxide) Triblock Copolymer/PLA Blends

14.3.8 Annually Renewable Biodegradable Materials. 14.3.8.1 Lipid/PLA Blends

14.3.8.2 Protein/PLA Blends

14.3.8.3 Carbohydrate/PLA Blends

14.3.8.4 Starch/PLA Blends

14.4 PLASTICIZATION OF PLA

14.5 CONCLUSIONS

REFERENCES

15 FOAMING

15.1 INTRODUCTION

15.2 PLASTIC FOAMS

15.3 FOAMING AGENTS

15.3.1 Physical Foaming Agents

15.3.2 Chemical Foaming Agents

15.3.2.1 Endothermic CFAs

15.3.2.2 Exothermic CFAs

15.4 FORMATION OF CELLULAR PLASTICS

15.4.1 Dissolution of Blowing Agent in Polymer

15.4.2 Bubble Formation

15.4.3 Bubble Growth and Stabilization

15.5 PLASTIC FOAMS EXPANDED WITH PHYSICAL FOAMING AGENTS

15.5.1 Microcellular Foamed Polymers

15.5.2 Solid‐State Batch Microcellular Foaming Process

15.5.2.1 Formation of Gas/Polymer Solution

15.5.2.2 Cell Nucleation

15.5.2.3 Cell Growth and Stabilization

15.5.2.4 Effects of the Nature of Polymer Matrix and Processing Conditions on the Morphology of Microcellular PLA Foams

15.5.2.4.1 Crystallinity

15.5.2.4.2 Micron‐/Nano‐Sized Fillers and Nanofoams

15.5.2.4.3 Foaming Conditions

15.5.2.4.4 Melt Rheology

15.5.3 Microcellular Foaming in a Continuous Process

15.5.3.1 Microcellular Extrusion of PLA Foams. 15.5.3.1.1 Effects of Nucleating Agent and Crystallinity

15.5.3.1.2 Effect of Melt Rheology

15.5.3.2 Microcellular Injection Molding of PLA Foams

15.6 PLA FOAMED WITH CHEMICAL FOAMING AGENTS

15.6.1 Effects of CFA Content and Type

15.6.2 Effect of Processing Conditions

15.7 MECHANICAL PROPERTIES OF PLA FOAMS

15.7.1 Batch Microcellular Foamed PLA

15.7.2 Extrusion of PLA

15.7.3 Microcellular Injection Molding of PLA

15.8 FOAMING OF PLA/STARCH AND OTHER BLENDS

REFERENCES

16 COMPOSITES

16.1 INTRODUCTION

16.2 PLA MATRIX

16.3 REINFORCEMENTS

16.3.1 Natural Fiber Reinforcement

16.3.1.1 Plant Fiber Reinforcements

16.3.1.2 Animal Fiber Reinforcements

16.3.2 Synthetic Fiber Reinforcement

16.3.3 Organic Filler Reinforcement

16.3.3.1 Wood‐Based Filler

16.3.3.2 Starch

16.3.3.3 Agricultural Waste‐Based Filler

16.3.4 Inorganic Filler Reinforcement

16.3.5 Laminated/Structural Composites

16.4 NANOCOMPOSITES

16.5 SURFACE MODIFICATION

16.5.1 Filler Surface Modification

16.5.2 Compatibilizing Agent

16.5.3 Composite Surface Modification

16.6 PROCESSING

16.6.1 Conventional Processing

16.6.2 3D Printing

16.7 PROPERTIES. 16.7.1 Mechanical Properties

16.7.1.1 Static Mechanical Properties

16.7.1.2 Dynamic Mechanical Properties

16.7.2 Thermal Properties

16.7.3 Flame Retardancy

16.7.4 Degradation

16.7.5 Shape Memory Properties

16.8 APPLICATIONS

16.8.1 Biomedical Applications

16.8.2 Packaging Applications

16.8.3 Automotive Applications

16.8.4 Sensing and Other Electronic Applications

16.9 FUTURE DEVELOPMENTS AND CONCLUDING REMARKS

REFERENCES

17 NANOCOMPOSITES: PROCESSING AND MECHANICAL PROPERTIES

17.1 INTRODUCTION

17.2 NANOCLAY‐CONTAINING PLA NANOCOMPOSITES

17.3 CARBON‐NANOTUBES‐CONTAINING PLA NANOCOMPOSITES

17.4 GRAPHENE‐CONTAINING PLA NANOCOMPOSITES

17.5 NANOCELLULOSE‐CONTAINING PLA NANOCOMPOSITES

17.6 OTHER NANOPARTICLE‐CONTAINING PLA NANOCOMPOSITES

17.7 MECHANICAL PROPERTIES OF PLA‐BASED NANOCOMPOSITES

17.8 POSSIBLE APPLICATIONS AND FUTURE PROSPECTS

ACKNOWLEDGMENT

REFERENCES

18 MECHANISM OF FIBER STRUCTURE DEVELOPMENT IN MELT SPINNING OF PLA

18.1 INTRODUCTION‐FUNDAMENTALS OF STRUCTURE DEVELOPMENT IN POLYMER PROCESSING

18.2 HIGH‐SPEED MELT SPINNING OF PLLAs WITH DIFFERENT D‐LACTIC ACID CONTENT

18.2.1 Wide‐angle X‐ray Diffraction

18.2.2 Birefringence

18.2.3 Differential Scanning Calorimetry

18.2.4 Modulated‐DSC and Lattice Spacing

18.3 HIGH‐SPEED MELT‐SPINNING OF RACEMIC MIXTURE OF PLLA AND PDLA. 18.3.1 Stereocomplex Crystal

18.3.2 Melt Spinning of PLLA/PDLA Blend

18.3.3 WAXD

18.3.4 Differential Scanning Calorimetry

18.3.5 In Situ WAXD upon Heating

18.4 BICOMPONENT MELT SPINNING OF PLLA AND PDLA. 18.4.1 Sheath‐Core and Islands‐in‐the‐Sea Configurations

18.4.2 Birefringence

18.4.3 DSC

18.4.4 Post Annealing

18.5 CONCLUDING REMARKS

REFERENCES

19 PHOTODEGRADATION AND RADIATION DEGRADATION

19.1 INTRODUCTION

19.2 MECHANISMS OF PHOTODEGRADATION. 19.2.1 Photon

19.2.2 Photon Absorption

19.2.3 Photochemical Reactions of Carbonyl Groups

19.3 MECHANISM OF RADIATION DEGRADATION. 19.3.1 High‐Energy Radiation

19.3.2 Basic Mechanism of Radiation Degradation

19.4 PHOTODEGRADATION OF PLA. 19.4.1 Fundamental Mechanism

19.4.2 Photooxidation Degradation

19.4.3 High‐Energy Photo‐Irradiation

19.4.4 Photosensitized Degradation of PLA

19.4.5 Photodegradation of PLA Blends

19.5 RADIATION DEGRADATION OF PLA

19.6 IRRADIATION EFFECTS ON BIODEGRADABILITY

19.7 MODIFICATION AND COMPOSITES OF PLA

REFERENCES

20 THERMAL DEGRADATION

20.1 INTRODUCTION

20.2 THERMAL DEGRADATION BEHAVIOR OF PLLA BASED ON WEIGHT LOSS. 20.2.1 Diverse Mechanisms

20.2.2 Factors Affecting the Thermal Degradation Mechanism. 20.2.2.1 Purification

20.2.2.2 Polymerization Catalyst Residue

20.2.2.3 Thermal Degradation Catalysts

20.2.3 Thermal Stabilization

20.3 KINETIC ANALYSIS OF THERMAL DEGRADATION

20.3.1 Single‐Step Thermal Degradation Process

20.3.2 Complex Thermal Degradation Process

20.4 KINETIC ANALYSIS OF COMPLEX THERMAL DEGRADATION BEHAVIOR. 20.4.1 Two‐Step Complex Reaction Analysis of PLLA in Blends

20.4.2 Multistep Complex Reaction Analysis of Commercially Available PLLA

20.4.2.1 Multistep Independent Complex Reaction Analysis

20.4.2.2 Multistep Competitive Complex Reaction Analysis

20.5 THERMAL DEGRADATION BEHAVIOR OF PLA STEREOCOMPLEX: scPLA

20.6 CONTROL OF RACEMIZATION

20.7 CONCLUSIONS

REFERENCES

21 HYDROLYTIC DEGRADATION

21.1 INTRODUCTION

21.2 DEGRADATION MECHANISM

21.2.1 Molecular Degradation Mechanism

21.2.2 Material Degradation Mechanism

21.2.3 Degradation of Crystalline Residues

21.3 PARAMETERS FOR HYDROLYTIC DEGRADATION

21.3.1 Effects of Surrounding Media

21.3.1.1 pH

21.3.1.2 Temperature

21.3.1.3 Effects of Miscellaneous Medium Parameters

21.3.2 Effects of Material Parameters

21.3.2.1 Molecular Structure. 21.3.2.1.1 Molecular Weight

21.3.2.1.2 Tacticity or Optical Purity

21.3.2.1.3 Copolymerization

21.3.2.1.4 Substituted PLA

21.3.2.1.5 Terminal Group

21.3.2.1.6 Branching

21.3.2.1.7 Cross‐linking

21.3.2.2 Highly Ordered Structures

21.3.2.2.1 Crystallinity

21.3.2.2.2 Crystalline Form

21.3.2.2.3 Crystalline Thickness

21.3.2.2.4 Orientation

21.3.2.3 Polymer Blending, Composites, and Additives. 21.3.2.3.1 Polymer Blending

21.3.2.3.2 Composites/Additives

21.3.2.4 Material Shapes

21.3.2.5 Miscellaneous Parameters

21.4 STRUCTURAL AND PROPERTY CHANGES DURING HYDROLYTIC DEGRADATION. 21.4.1 Fractions of Components

21.4.2 Crystallization

21.4.3 Mechanical Properties

21.4.4 Thermal Properties

21.4.5 Surface Properties

21.4.6 Morphology

21.5 APPLICATIONS OF HYDROLYTIC DEGRADATION

21.5.1 Material Preparation. 21.5.1.1 Manipulation of Surface Properties

21.5.1.2 Formation of Reactive Sites on Surface

21.5.1.3 Preparation of Structured Materials and Nanomaterials

21.5.1.4 Preparation of Low‐Molecular‐Weight PLA

21.5.2 Recycling of PLA to Its Monomer

21.6 CONCLUSIONS

REFERENCES

22 ENZYMATIC DEGRADATION

22.1 INTRODUCTION. 22.1.1 Definition of Biodegradable Plastics

22.1.2 Enzymatic Degradation

22.2 ENZYMATIC DEGRADATION OF PLA FILMS

22.2.1 Structure and Substrate Specificity of Proteinase K

22.2.2 Enzymatic Degradability of PLLA Films

22.2.3 Enzymatic Degradability of PLA Stereoisomers and Their Blends

22.2.4 Effects of Surface Properties on Enzymatic Degradability of PLLA Films

22.3 ENZYMATIC DEGRADATION OF THIN FILMS

22.3.1 Thin Films and Analytical Techniques

22.3.2 Crystalline Morphologies of Thin Films

22.3.3 Enzymatic Adsorption and Degradation Rate of Thin Films

22.3.4 Enzymatic Degradation of LB Film

22.3.5 Application of Selective Enzymatic Degradation

22.4 ENZYMATIC DEGRADATION OF LAMELLAR CRYSTALS

22.4.1 Enzymatic Degradation of PLLA Single Crystals

22.4.2 Thermal Treatment and Enzymatic Degradation of PLLA Single Crystals

22.4.3 Single Crystals of PLA Stereocomplex

22.5 RECENT ADVANCES IN CHARACTERIZATION OF ENZYMES THAT DEGRADE PLAs INCLUDING PDLA AND RELATED COPOLYMERS

22.5.1 αβ‐Hydrolase

22.5.2 Lipases and Cutinase‐Like Enzymes

22.5.3 Polyhydroxyalkanoate Depolymerases

22.5.4 Enhancement of Biodegradability of PLAs

22.5.5 Control of Enzymatic Degradation of PLAs

22.6 FUTURE PERSPECTIVES

REFERENCES

23 ENVIRONMENTAL FOOTPRINT AND LIFE CYCLE ASSESSMENT OF POLY (LACTIC ACID)

23.1 INTRODUCTION TO LCA AND ENVIRONMENTAL FOOTPRINTS

23.1.1 Life Cycle Assessment

23.1.2 Uncertainty in LCA

23.2 LIFE CYCLE CONSIDERATIONS FOR PLA. 23.2.1 The Life Cycle of PLA

23.2.2 Energy Use and Global Warming

23.2.3 Environmental Trade‐Offs

23.2.4 Waste Management

23.2.5 End of Life

23.3 REVIEW OF BIOPOLYMER LCA STUDIES

23.3.1 Cradle‐to‐Gate and Cradle‐to‐Grave LCAs

23.3.2 End‐of‐Life LCAs

23.4 IMPROVING PLA'S ENVIRONMENTAL FOOTPRINT

23.4.1 Agricultural Management

23.4.2 Feedstock Choice

23.4.3 Energy

23.4.4 Design for End of Life

REFERENCES

24 END‐OF‐LIFE SCENARIOS FOR POLY(LACTIC ACID)

24.1 INTRODUCTION

24.2 TRANSITION FROM A LINEAR TO A CIRCULAR ECONOMY FOR PLASTICS

24.3 WASTE MANAGEMENT SYSTEM

24.4 END‐OF‐LIFE SCENARIOS FOR PLA

24.4.1 Prevention and Source Reduction

24.4.2 Reuse

24.4.3 Recycling

24.4.3.1 Mechanical Recycling

24.4.3.2 Chemical Recycling

24.4.4 Biodegradation. 24.4.4.1 Aerobic Biodegradation—Industrial and Home Composting

24.4.4.2 Anaerobic Biodegradation—Digestion and Conversion to Biogas

24.4.5 Incineration with Energy Recovery

24.4.6 Landfill

24.5 LCA OF END‐OF‐LIFE SCENARIO FOR PLA

24.6 FINAL REMARKS

REFERENCES

25 MEDICAL APPLICATIONS

25.1 INTRODUCTION

25.2 MINIMAL REQUIREMENTS FOR MEDICAL DEVICES. 25.2.1 General

25.2.2 PLA as Medical Implants

25.3 PRECLINICAL AND CLINICAL APPLICATIONS OF PLA DEVICES. 25.3.1 Fibers

25.3.2 Meshes

25.3.3 Bone Fixation Devices

25.3.3.1 Stress Shielding Effect

25.3.3.2 Piezoelectric Effect

25.3.3.3 Screws, Pins, and Rods

25.3.3.4 Plates

25.3.4 Micro‐ and Nanoparticles, and Thin Coatings

25.3.5 Scaffolds

25.4 CONCLUSIONS

REFERENCES

26 PACKAGING AND CONSUMER GOODS

26.1 INTRODUCTION: POLYLACTIC ACID (PLA) IN PACKAGING AND CONSUMER GOODS

26.2 FOOD AND BEVERAGE. 26.2.1 Evolution of PLA in the Food and Beverage Market

26.2.2 Growing Interest in PLA Serviceware

26.3 DISTRIBUTION PACKAGING

26.4 OTHER CONSUMER GOODS: AUTOMOTIVE

26.5 OTHER CONSUMER GOODS

26.6 CHALLENGES AND FINAL REMARKS

REFERENCES

27 TEXTILE APPLICATIONS

27.1 INTRODUCTION

27.2 MANUFACTURING, PROPERTIES, AND STRUCTURE OF PLA FIBERS. 27.2.1 PLA Fiber Manufacture

27.2.2 Properties of PLA Fibers and Textile

27.2.3 Effects of Structure on Properties

27.2.4 PLA Stereocomplex Fibers

27.3 KEY PERFORMANCE FEATURES OF PLA FIBERS. 27.3.1 Biodegradability and the Biodegradation Mechanism

27.3.2 Moisture Management

27.3.3 Antibacterial/Antifungal Properties

27.3.4 Low Flammability

27.3.5 Weathering Stability

27.4 POTENTIAL APPLICATIONS

27.4.1 Geotextiles

27.4.2 Industrial Fabrics

27.4.3 Filters

27.4.4 Towels and Wipes

27.4.5 Home Furnishings

27.4.6 Clothing and Personal Belongings

27.4.7 3D‐Printing Filament

27.5 CONCLUSIONS

REFERENCES

28 ENVIRONMENTAL APPLICATIONS

28.1 INTRODUCTION

28.2 APPLICATION TO WATER AND WASTEWATER TREATMENT. 28.2.1 Application as Sorbents

28.2.2 Application to Nitrogen Removal. 28.2.2.1 Solid‐Phase Denitrification

28.2.2.2 Degradability of the Solid Substrate

28.2.2.3 Denitrification Efficiency

28.2.2.4 Blend‐Supported Nitrogen Removal

28.2.2.5 Biodiversity of Microorganisms Involved

28.3 APPLICATION TO METHANOGENESIS. 28.3.1 Anaerobic Digestion

28.3.2 Methanogenic Microbial Community

28.4 APPLICATION TO BIOREMEDIATION. 28.4.1 Significance of PLA Use

28.4.2 Bioremediation of Organohalogen Pollution

28.4.3 Other Applications

28.5 CONCLUDING REMARKS AND PROSPECTS

ACKNOWLEDGMENTS

REFERENCES

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Wiley Series on Polymer Engineering and TechnologyRichard F. Grossman and Domasius Nwabunma, Series Editors

Polyolefin Blends Edited by Domasius Nwabunma and Thein Kyu

.....

Shuko Suzuki, The Queensland Eye Institute, South Brisbane, Queensland, Australia

Wataru Takarada, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Poly(lactic acid)
Подняться наверх