Poly(lactic acid)
Реклама. ООО «ЛитРес», ИНН: 7719571260.
Оглавление
Группа авторов. Poly(lactic acid)
Table of Contents
List of Tables
List of Illustrations
Guide
Pages
POLY(LACTIC ACID) Synthesis, Structures, Properties, Processing, Applications, and End of Life
LIST OF CONTRIBUTORS
PREFACE
REFERENCE
AUTHOR BIOGRAPHIES
1 PRODUCTION AND PURIFICATION OF LACTIC ACID AND LACTIDE
1.1 INTRODUCTION
1.2 LACTIC ACID. 1.2.1 History of Lactic Acid
1.2.2 Physical Properties of Lactic Acid
1.2.3 Chemistry of Lactic Acid
1.2.4 Production of Lactic Acid by Fermentation
1.2.4.1 The Microbes
1.2.4.2 Stereochemical Purity
1.2.4.3 Nutrients
1.2.4.4 Neutralization
1.2.4.5 Carbohydrates for Lactic Acid Production
1.2.4.6 Starch
1.2.4.7 Lignocellulose
1.2.4.8 Batch versus Continuous Fermentation
1.2.5 Downstream Processing/Purificationof Lactic Acid
1.2.5.1 Purification Methods for Lactic Acid
1.2.5.2 Gypsum‐Free Lactic Acid Production
1.2.5.3 Modern Industrial Methods
1.2.6 Quality/Specifications of Lactic Acid
1.3 LACTIDE. 1.3.1 Physical Properties of Lactide
1.3.2 Production of Lactide
1.3.2.1 Prepolymerization
1.3.2.2 Lactide Synthesis During Prepolymerization
1.3.2.3 Basic Research on Batch Lactide Synthesis and the Catalysts Used
1.3.2.4 Continuous Synthesis
1.3.3 Purification of Lactide
1.3.4 Quality and Specifications of Polymer‐Grade Lactide
1.3.4.1 Role of the Catalyst and Initiator in Lactide Polymerization
1.3.4.2 Alcohols
1.3.4.3 Carboxylic Acids
1.3.4.4 Metals
1.3.4.5 Stereochemical Purity
1.3.5 Concluding Remarks on Polymer‐Grade Lactide
REFERENCES
2 AQUEOUS SOLUTIONS OF LACTIC ACID
2.1 INTRODUCTION
2.2 STRUCTURE OF LACTIC ACID
2.3 VAPOR PRESSURE OF ANHYDROUS LACTIC ACID AND LACTIDE
2.4 OLIGOMERIZATION IN AQUEOUS SOLUTIONS
2.5 EQUILIBRIUM DISTRIBUTION OF OLIGOMERS
2.6 VAPOR–LIQUID EQUILIBRIUM
2.7 DENSITY OF AQUEOUS SOLUTIONS
2.8 VISCOSITY OF AQUEOUS SOLUTIONS
2.9 SUMMARY
REFERENCES
3 INDUSTRIAL PRODUCTION OF HIGH‐MOLECULAR‐WEIGHT POLY(LACTIC ACID)
3.1 INTRODUCTION
3.2 LACTIC‐ACID‐BASED POLYMERS BY POLYCONDENSATION
3.2.1 Direct Condensation
3.2.2 Solid‐State Polycondensation
3.2.3 Azeotropic Dehydration
3.3 LACTIC ACID‐BASED POLYMERS BY CHAIN EXTENSION. 3.3.1 Chain Extension with Diisocyanates
3.3.1.1 Chain‐Extension Reaction Parameters
3.3.1.2 Properties of Poly(Ester‐Urethane)s
3.3.2 Chain Extension with Bis‐2‐Oxazoline
3.3.2.1 Chain‐Extension Reaction Parameters
3.3.2.2 Properties of Poly(Ester‐Amide)s
3.3.3 Dual Linking Processes
3.3.4 Chain Extension with Bis‐Epoxies
3.4 LACTIC‐ACID‐BASED POLYMERS BY RING‐OPENING POLYMERIZATION
3.4.1 Polycondensation Processes
3.4.2 Lactide Manufacturing
3.4.2.1 Solvent‐Assisted Purification
3.4.2.2 Melt Crystallization
3.4.2.3 Separation in the Gas Phase
3.4.2.4 Separation by Cooling
3.4.3 Ring‐Opening Polymerization
3.4.3.1 Reactor Design
3.4.3.2 Catalyst Systems
3.4.3.3 Post‐Polymerization Treatments
REFERENCES
4 DESIGN AND SYNTHESIS OF DIFFERENT TYPES OF POLY(LACTIC ACID)/POLYLACTIDE COPOLYMERS
4.1 INTRODUCTION
4.2 COMONOMERS WITH LACTIC ACID/LACTIDE. 4.2.1 Glycolic Acid/Glycolide
4.2.2 Poly(Alkylene Glycol)
4.2.3 δ‐Valerolactone and β‐Butyrolactone
4.2.4 ε‐Caprolactone
4.2.5 1,5‐Dioxepan‐2‐One
4.2.6 Trimethylene Carbonate
4.2.7 Poly(N‐Isopropylacrylamide)
4.2.8 Alkylthiophene (P3AT)
4.2.9 Polypeptide
4.3 FUNCTIONALIZED PLA
4.4 MACROMOLECULAR DESIGN OF LACTIDE‐BASED COPOLYMERS
4.4.1 Graft Copolymers
4.4.2 Star‐Shaped Copolymers
4.4.3 Periodic Copolymers
4.5 PROPERTIES OF LACTIDE‐BASED COPOLYMERS
4.6 DEGRADATION OF LACTIDE HOMO‐ AND COPOLYMERS
4.6.1 Drug Delivery from Lactide‐Based Copolymers
4.6.2 Radiation Effects
REFERENCES
5 PREPARATION, STRUCTURE, AND PROPERTIES OF STEREOCOMPLEX‐TYPE POLY(LACTIC ACID)
5.1 INTRODUCTION
5.2 STEREOCOMPLEXATION IN POLY(LACTIC ACID)
5.3 CRYSTAL STRUCTURE OF sc‐PLA
5.4 FORMATION OF STEREOBLOCK PLA
5.4.1 Single‐Step Process
5.4.2 Stepwise ROP
5.4.3 Chain Coupling Method. 5.4.3.1 Chain Extension
5.4.3.2 Click Chemistry
5.4.3.3 Polycondensation
5.5 STEREOCOMPLEXATION IN COPOLYMERS
5.5.1 Stereocomplexation in Random and Alternating Lactic Acid or Lactide‐Based Polymers
5.5.2 sc‐PLA–PCL Copolymers
5.5.3 sc‐PLA–PEG Copolymers
5.6 STEREOCOMPLEX PLA‐BASED COMPOSITES
5.7 Advances in Stereocomplex‐PLA
5.8 CONCLUSIONS
REFERENCES
6 STRUCTURES AND PHASE TRANSITIONS OF PLA AND ITS RELATED POLYMERS
6.1 INTRODUCTION
6.2 STRUCTURAL STUDY OF PLA. 6.2.1 Preparation of Crystal Modifications of PLA
6.2.2 Crystal Structure of the α Form
6.2.3 Crystal Structure of the δ Form
6.2.4 Crystal Structure of the β Form
6.2.5 Structure of the Mesophase
6.3 THERMALLY INDUCED PHASE TRANSITIONS
6.3.1 Phase Transition in Cold Crystallization
6.3.2 Phase Transition in the Melt Crystallization
6.3.3 Mechanically Induced Phase Transition
6.4 MICROSCOPICALLY‐VIEWED STRUCTURE‐MECHANICAL PROPERTIES OF PLA
6.5 STRUCTURE AND FORMATION OF PLLA/PDLA STEREOCOMPLEX. 6.5.1 Reconsideration of the Crystal Structure
6.5.2 Experimental Support of P3 Structure Model
6.5.3 Formation Mechanism of Stereocomplex
6.6 PHB AND OTHER BIODEGRADABLE POLYESTERS
6.6.1 Poly(3‐Hydroxybutyrate) (PHB) 6.6.1.1 Crystal Structure of α Form
6.6.1.2 Crystal Structure of β Form
6.6.1.3 Transition Mechanism to the β Form
6.6.2 Polyethylene Adipate (PEA)
6.7 FUTURE PERSPECTIVES
ACKNOWLEDGEMENTS
REFERENCES
7 OPTICAL AND SPECTROSCOPIC PROPERTIES
7.1 INTRODUCTION
7.2 ABSORPTION AND TRANSMISSION OF UV–VIS RADIATION
7.3 REFRACTIVE INDEX
7.4 SPECIFIC OPTICAL ROTATION
7.5 INFRARED AND RAMAN SPECTROSCOPY
7.5.1 Infrared Spectroscopy
7.5.1.1 Structural Analysis: Band Assignment
7.5.1.2 Surface Characterization
7.5.1.3 Crystallization Studies
7.5.2 Raman Spectroscopy
7.6 1H AND 13C NMR SPECTROSCOPY
REFERENCES
8 CRYSTALLIZATION AND THERMAL PROPERTIES*
8.1 INTRODUCTION
8.2 CRYSTALLINITY AND CRYSTALLIZATION
8.3 CRYSTALLIZATION REGIME
8.4 FIBERS
8.5 COMMERCIAL POLYMERS AND PRODUCTS
8.6 DEGRADATION AND CRYSTALLINITY
ACKNOWLEDGMENTS
REFERENCES
Note
9 RHEOLOGY OF POLY(LACTIC ACID)
9.1 INTRODUCTION
9.2 FUNDAMENTAL CHAIN PROPERTIES FROM DILUTE SOLUTION VISCOMETRY
9.2.1 Unperturbed Chain Dimensions
9.2.2 Real Chains
9.2.3 Solution Viscometry
9.2.4 Viscometry of PLA
9.3 PROCESSING OF PLA: GENERAL CONSIDERATIONS
9.4 MELT RHEOLOGY: AN OVERVIEW
9.5 PROCESSING OF PLA: RHEOLOGICAL PROPERTIES
9.6 CONCLUSIONS
APPENDIX 9.A DESCRIPTION OF THE SOFTWARE
REFERENCES
10 MECHANICAL PROPERTIES
10.1 INTRODUCTION
10.2 GENERAL MECHANICAL PROPERTIES AND MOLECULAR WEIGHT EFFECT. 10.2.1 Tensile and Flexural Properties
10.2.2 Impact Resistance
10.2.3 Hardness
10.3 TEMPERATURE EFFECT
10.4 RELAXATION AND AGING
10.5 ANNEALING
10.6 ORIENTATION
10.7 STEREOREGULARITY
10.8 SELF‐REINFORCED PLA COMPOSITES
10.9 PLA NANOCOMPOSITES
10.10 COPOLYMERIZATION
10.11 PLASTICIZATION
10.12 PLA BLENDS
10.13 CONCLUSIONS
REFERENCES
11 MASS TRANSFER
11.1 INTRODUCTION
11.2 BACKGROUND ON MASS TRANSFER IN POLYMERS
11.3 MASS TRANSFER PROPERTIES OF NEAT PLA FILMS
11.3.1 Mass Transfer of Gases
11.3.1.1 Gas Permeability
11.3.1.1.1 Factors Affecting Gas Permeability
11.3.1.2 Gas Diffusion
11.3.1.2.1 Factors Affecting Gas Diffusion
11.3.1.3 Gas Solubility
11.3.1.3.1 Factors Affecting Gas Solubility
11.3.1.4 Remarks for Gases
11.3.2 Mass Transfer of Oxygen
11.3.2.1 Factors Affecting Mass Transfer of Oxygen
11.3.2.2 Remarks for Oxygen
11.3.3 Mass Transfer of Water Vapor
11.3.3.1 Factors Affecting Mass Transfer of Water Vapor
11.3.3.2 Remarks for Water Vapor
11.3.4 Mass Transfer of Organic Vapors
11.3.4.1 Factors Affecting Mass Transfer of Organic Vapors
11.3.4.2 Remarks for Organic Vapors
11.4 MASS TRANSFER PROPERTIES OF MODIFIED PLA
11.4.1 PLA Stereocomplex and PLA Blends
11.4.2 PLA Nanocomposites
11.4.3 Other PLA Modifications
11.4.4 PLA in Other Forms
11.5 FINAL REMARKS
ACKNOWLEDGMENTS
REFERENCES
12 MIGRATION AND INTERACTION WITH CONTACT MATERIALS
12.1 INTRODUCTION
12.2 MIGRATION PRINCIPLES
12.3 LEGISLATION
12.4 MIGRATION AND TOXICOLOGICAL DATA OF LACTIC ACID, LACTIDE, DIMERS, AND OLIGOMERS
12.4.1 Lactic Acid
12.4.1.1 Migration to Aqueous Simulants
12.4.1.2 Migration to Acidic Simulants
12.4.1.3 Migration to Fatty Food Simulants
12.4.1.4 Migration to Liquor Simulants
12.4.2 Lactide
12.4.3 Oligomers
12.5 EDI OF LACTIC ACID
12.6 OTHER POTENTIAL MIGRANTS FROM PLA
12.7 CONCLUSIONS
REFERENCES
13 PROCESSING OF POLY(LACTIC ACID)
13.1 INTRODUCTION
13.2 PROPERTIES OF PLA RELEVANT TO PROCESSING
13.3 MODIFICATION OF PLA PROPERTIES BY PROCESS AIDS AND OTHER ADDITIVES
13.4 DRYING AND CRYSTALLIZING
13.5 EXTRUSION
13.6 INJECTION MOLDING
13.7 FILM AND SHEET CASTING
13.8 STRETCH BLOW MOLDING
13.9 EXTRUSION BLOWN FILM
13.10 THERMOFORMING
13.11 MELT SPINNING
13.12 SOLUTION SPINNING
13.13 ELECTROSPINNING
13.14 FILAMENT EXTRUSION AND 3D‐PRINTING
13.15 CONCLUSION: PROSPECTS OF PLA POLYMERS
REFERENCES
14 BLENDS
14.1 INTRODUCTION
14.2 PLA NONBIODEGRADABLE POLYMER BLENDS
14.2.1 Polyolefins
14.2.1.1 PLA‐PE Blends
14.2.1.2 PLA‐PP Blends
14.2.2 Vinyl and Vinylidene Polymers and Copolymers. 14.2.2.1 Polystyrene/PLA Blends
14.2.2.2 Poly(Vinyl Phenol)/PLA Blends
14.2.2.3 Poly(Ethylene‐co‐Vinyl Acetate)/PLA Blends
14.2.2.4 Poly(Ethylene‐co‐Vinyl Alcohol)/PLA Blends
14.2.2.5 Acrylonitrile–Butadiene–Styrene Copolymer/PLA Blends
14.2.3 Rubbers and Elastomers. 14.2.3.1 Core‐Shell Rubber PLA Blends
14.2.3.2 Poly(cis‐1,4‐Isoprene)/PLA Blends
14.2.3.3 Poly(Ethylene Octene) Copolymer/PLA Blends
14.2.4 PLA/PMMA Blends
14.3 PLA/BIODEGRADABLE POLYMER BLENDS
14.3.1 Polyanhydrides
14.3.1.1 Poly(Sebacic Anhydride)/PLA Blends and Poly(Anhydride‐co‐Amide)/PLA Blends
14.3.2 Vinyl and Vinylidene Polymers and Copolymers. 14.3.2.1 Poly(Vinyl Alcohol)/PLA Blends
14.3.2.2 Poly(Vinyl Acetate)/PLA Blends
14.3.2.3 Poly(Vinyl Acetate‐co‐Vinyl Alcohol)/PLA Blends
14.3.2.4 Poly(Vinyl Pyrrolidone)/PLA Blends
14.3.3 Aliphatic Polyesters and Copolyesters. 14.3.3.1 Poly(ε‐Caprolactone)/PLA Blends
14.3.3.2 Polyhydroxyalkanoate/PLA Blends
14.3.3.3 Poly(Butylene Succinate)/PLA Blends
14.3.3.4 Poly(Butylene Succinate‐co‐Adipate)/PLA Blends
14.3.3.5 Poly(Butylene Succinate‐co‐L‐Lactate)/PLA Blends
14.3.3.6 Poly(Butylene Succinate‐co‐Butylene Carbonate)/PLA Blends
14.3.3.7 Poly(Glycolic Acid)/PLA Blends
14.3.3.8 Poly(Lactic‐co‐Glycolic Acid)/PLA Blends
14.3.4 Aliphatic–Aromatic Copolyesters. 14.3.4.1 Poly(Butylene Adipate‐co‐Terephthalate)/PLA Blends
14.3.4.2 Poly(Tetramethylene Adipate‐co‐Terephthalate)/PLA Blends
14.3.5 Elastomers and Rubbers. 14.3.5.1 Natural Rubber and Epoxidized Natural Rubber PLA Blends
14.3.5.2 Polyamide Elastomer/PLA Blends
14.3.5.3 Poly(Ether)Urethane Elastomer/PLA Blends
14.3.5.4 Poly(ε‐CL/L‐Lac)/PLA Blends, Polytrimethylene Carbonate/PLA Blends, and Poly(TMC/ε‐CL)/PLA Blends
14.3.6 Poly(Ester Amide)/PLA Blends
14.3.7 Polyethers and Copolymers
14.3.7.1 Poly(Ethylene Glycol)/PLA Blends
14.3.7.2 Poly(Ethylene Oxide)/PLA Blends
14.3.7.3 Poly(Ethylene Oxide)‐b‐Poly(Propylene Oxide)b‐Poly(Ethylene Oxide) Triblock Copolymer/PLA Blends
14.3.8 Annually Renewable Biodegradable Materials. 14.3.8.1 Lipid/PLA Blends
14.3.8.2 Protein/PLA Blends
14.3.8.3 Carbohydrate/PLA Blends
14.3.8.4 Starch/PLA Blends
14.4 PLASTICIZATION OF PLA
14.5 CONCLUSIONS
REFERENCES
15 FOAMING
15.1 INTRODUCTION
15.2 PLASTIC FOAMS
15.3 FOAMING AGENTS
15.3.1 Physical Foaming Agents
15.3.2 Chemical Foaming Agents
15.3.2.1 Endothermic CFAs
15.3.2.2 Exothermic CFAs
15.4 FORMATION OF CELLULAR PLASTICS
15.4.1 Dissolution of Blowing Agent in Polymer
15.4.2 Bubble Formation
15.4.3 Bubble Growth and Stabilization
15.5 PLASTIC FOAMS EXPANDED WITH PHYSICAL FOAMING AGENTS
15.5.1 Microcellular Foamed Polymers
15.5.2 Solid‐State Batch Microcellular Foaming Process
15.5.2.1 Formation of Gas/Polymer Solution
15.5.2.2 Cell Nucleation
15.5.2.3 Cell Growth and Stabilization
15.5.2.4 Effects of the Nature of Polymer Matrix and Processing Conditions on the Morphology of Microcellular PLA Foams
15.5.2.4.1 Crystallinity
15.5.2.4.2 Micron‐/Nano‐Sized Fillers and Nanofoams
15.5.2.4.3 Foaming Conditions
15.5.2.4.4 Melt Rheology
15.5.3 Microcellular Foaming in a Continuous Process
15.5.3.1 Microcellular Extrusion of PLA Foams. 15.5.3.1.1 Effects of Nucleating Agent and Crystallinity
15.5.3.1.2 Effect of Melt Rheology
15.5.3.2 Microcellular Injection Molding of PLA Foams
15.6 PLA FOAMED WITH CHEMICAL FOAMING AGENTS
15.6.1 Effects of CFA Content and Type
15.6.2 Effect of Processing Conditions
15.7 MECHANICAL PROPERTIES OF PLA FOAMS
15.7.1 Batch Microcellular Foamed PLA
15.7.2 Extrusion of PLA
15.7.3 Microcellular Injection Molding of PLA
15.8 FOAMING OF PLA/STARCH AND OTHER BLENDS
REFERENCES
16 COMPOSITES
16.1 INTRODUCTION
16.2 PLA MATRIX
16.3 REINFORCEMENTS
16.3.1 Natural Fiber Reinforcement
16.3.1.1 Plant Fiber Reinforcements
16.3.1.2 Animal Fiber Reinforcements
16.3.2 Synthetic Fiber Reinforcement
16.3.3 Organic Filler Reinforcement
16.3.3.1 Wood‐Based Filler
16.3.3.2 Starch
16.3.3.3 Agricultural Waste‐Based Filler
16.3.4 Inorganic Filler Reinforcement
16.3.5 Laminated/Structural Composites
16.4 NANOCOMPOSITES
16.5 SURFACE MODIFICATION
16.5.1 Filler Surface Modification
16.5.2 Compatibilizing Agent
16.5.3 Composite Surface Modification
16.6 PROCESSING
16.6.1 Conventional Processing
16.6.2 3D Printing
16.7 PROPERTIES. 16.7.1 Mechanical Properties
16.7.1.1 Static Mechanical Properties
16.7.1.2 Dynamic Mechanical Properties
16.7.2 Thermal Properties
16.7.3 Flame Retardancy
16.7.4 Degradation
16.7.5 Shape Memory Properties
16.8 APPLICATIONS
16.8.1 Biomedical Applications
16.8.2 Packaging Applications
16.8.3 Automotive Applications
16.8.4 Sensing and Other Electronic Applications
16.9 FUTURE DEVELOPMENTS AND CONCLUDING REMARKS
REFERENCES
17 NANOCOMPOSITES: PROCESSING AND MECHANICAL PROPERTIES
17.1 INTRODUCTION
17.2 NANOCLAY‐CONTAINING PLA NANOCOMPOSITES
17.3 CARBON‐NANOTUBES‐CONTAINING PLA NANOCOMPOSITES
17.4 GRAPHENE‐CONTAINING PLA NANOCOMPOSITES
17.5 NANOCELLULOSE‐CONTAINING PLA NANOCOMPOSITES
17.6 OTHER NANOPARTICLE‐CONTAINING PLA NANOCOMPOSITES
17.7 MECHANICAL PROPERTIES OF PLA‐BASED NANOCOMPOSITES
17.8 POSSIBLE APPLICATIONS AND FUTURE PROSPECTS
ACKNOWLEDGMENT
REFERENCES
18 MECHANISM OF FIBER STRUCTURE DEVELOPMENT IN MELT SPINNING OF PLA
18.1 INTRODUCTION‐FUNDAMENTALS OF STRUCTURE DEVELOPMENT IN POLYMER PROCESSING
18.2 HIGH‐SPEED MELT SPINNING OF PLLAs WITH DIFFERENT D‐LACTIC ACID CONTENT
18.2.1 Wide‐angle X‐ray Diffraction
18.2.2 Birefringence
18.2.3 Differential Scanning Calorimetry
18.2.4 Modulated‐DSC and Lattice Spacing
18.3 HIGH‐SPEED MELT‐SPINNING OF RACEMIC MIXTURE OF PLLA AND PDLA. 18.3.1 Stereocomplex Crystal
18.3.2 Melt Spinning of PLLA/PDLA Blend
18.3.3 WAXD
18.3.4 Differential Scanning Calorimetry
18.3.5 In Situ WAXD upon Heating
18.4 BICOMPONENT MELT SPINNING OF PLLA AND PDLA. 18.4.1 Sheath‐Core and Islands‐in‐the‐Sea Configurations
18.4.2 Birefringence
18.4.3 DSC
18.4.4 Post Annealing
18.5 CONCLUDING REMARKS
REFERENCES
19 PHOTODEGRADATION AND RADIATION DEGRADATION
19.1 INTRODUCTION
19.2 MECHANISMS OF PHOTODEGRADATION. 19.2.1 Photon
19.2.2 Photon Absorption
19.2.3 Photochemical Reactions of Carbonyl Groups
19.3 MECHANISM OF RADIATION DEGRADATION. 19.3.1 High‐Energy Radiation
19.3.2 Basic Mechanism of Radiation Degradation
19.4 PHOTODEGRADATION OF PLA. 19.4.1 Fundamental Mechanism
19.4.2 Photooxidation Degradation
19.4.3 High‐Energy Photo‐Irradiation
19.4.4 Photosensitized Degradation of PLA
19.4.5 Photodegradation of PLA Blends
19.5 RADIATION DEGRADATION OF PLA
19.6 IRRADIATION EFFECTS ON BIODEGRADABILITY
19.7 MODIFICATION AND COMPOSITES OF PLA
REFERENCES
20 THERMAL DEGRADATION
20.1 INTRODUCTION
20.2 THERMAL DEGRADATION BEHAVIOR OF PLLA BASED ON WEIGHT LOSS. 20.2.1 Diverse Mechanisms
20.2.2 Factors Affecting the Thermal Degradation Mechanism. 20.2.2.1 Purification
20.2.2.2 Polymerization Catalyst Residue
20.2.2.3 Thermal Degradation Catalysts
20.2.3 Thermal Stabilization
20.3 KINETIC ANALYSIS OF THERMAL DEGRADATION
20.3.1 Single‐Step Thermal Degradation Process
20.3.2 Complex Thermal Degradation Process
20.4 KINETIC ANALYSIS OF COMPLEX THERMAL DEGRADATION BEHAVIOR. 20.4.1 Two‐Step Complex Reaction Analysis of PLLA in Blends
20.4.2 Multistep Complex Reaction Analysis of Commercially Available PLLA
20.4.2.1 Multistep Independent Complex Reaction Analysis
20.4.2.2 Multistep Competitive Complex Reaction Analysis
20.5 THERMAL DEGRADATION BEHAVIOR OF PLA STEREOCOMPLEX: scPLA
20.6 CONTROL OF RACEMIZATION
20.7 CONCLUSIONS
REFERENCES
21 HYDROLYTIC DEGRADATION
21.1 INTRODUCTION
21.2 DEGRADATION MECHANISM
21.2.1 Molecular Degradation Mechanism
21.2.2 Material Degradation Mechanism
21.2.3 Degradation of Crystalline Residues
21.3 PARAMETERS FOR HYDROLYTIC DEGRADATION
21.3.1 Effects of Surrounding Media
21.3.1.1 pH
21.3.1.2 Temperature
21.3.1.3 Effects of Miscellaneous Medium Parameters
21.3.2 Effects of Material Parameters
21.3.2.1 Molecular Structure. 21.3.2.1.1 Molecular Weight
21.3.2.1.2 Tacticity or Optical Purity
21.3.2.1.3 Copolymerization
21.3.2.1.4 Substituted PLA
21.3.2.1.5 Terminal Group
21.3.2.1.6 Branching
21.3.2.1.7 Cross‐linking
21.3.2.2 Highly Ordered Structures
21.3.2.2.1 Crystallinity
21.3.2.2.2 Crystalline Form
21.3.2.2.3 Crystalline Thickness
21.3.2.2.4 Orientation
21.3.2.3 Polymer Blending, Composites, and Additives. 21.3.2.3.1 Polymer Blending
21.3.2.3.2 Composites/Additives
21.3.2.4 Material Shapes
21.3.2.5 Miscellaneous Parameters
21.4 STRUCTURAL AND PROPERTY CHANGES DURING HYDROLYTIC DEGRADATION. 21.4.1 Fractions of Components
21.4.2 Crystallization
21.4.3 Mechanical Properties
21.4.4 Thermal Properties
21.4.5 Surface Properties
21.4.6 Morphology
21.5 APPLICATIONS OF HYDROLYTIC DEGRADATION
21.5.1 Material Preparation. 21.5.1.1 Manipulation of Surface Properties
21.5.1.2 Formation of Reactive Sites on Surface
21.5.1.3 Preparation of Structured Materials and Nanomaterials
21.5.1.4 Preparation of Low‐Molecular‐Weight PLA
21.5.2 Recycling of PLA to Its Monomer
21.6 CONCLUSIONS
REFERENCES
22 ENZYMATIC DEGRADATION
22.1 INTRODUCTION. 22.1.1 Definition of Biodegradable Plastics
22.1.2 Enzymatic Degradation
22.2 ENZYMATIC DEGRADATION OF PLA FILMS
22.2.1 Structure and Substrate Specificity of Proteinase K
22.2.2 Enzymatic Degradability of PLLA Films
22.2.3 Enzymatic Degradability of PLA Stereoisomers and Their Blends
22.2.4 Effects of Surface Properties on Enzymatic Degradability of PLLA Films
22.3 ENZYMATIC DEGRADATION OF THIN FILMS
22.3.1 Thin Films and Analytical Techniques
22.3.2 Crystalline Morphologies of Thin Films
22.3.3 Enzymatic Adsorption and Degradation Rate of Thin Films
22.3.4 Enzymatic Degradation of LB Film
22.3.5 Application of Selective Enzymatic Degradation
22.4 ENZYMATIC DEGRADATION OF LAMELLAR CRYSTALS
22.4.1 Enzymatic Degradation of PLLA Single Crystals
22.4.2 Thermal Treatment and Enzymatic Degradation of PLLA Single Crystals
22.4.3 Single Crystals of PLA Stereocomplex
22.5 RECENT ADVANCES IN CHARACTERIZATION OF ENZYMES THAT DEGRADE PLAs INCLUDING PDLA AND RELATED COPOLYMERS
22.5.1 αβ‐Hydrolase
22.5.2 Lipases and Cutinase‐Like Enzymes
22.5.3 Polyhydroxyalkanoate Depolymerases
22.5.4 Enhancement of Biodegradability of PLAs
22.5.5 Control of Enzymatic Degradation of PLAs
22.6 FUTURE PERSPECTIVES
REFERENCES
23 ENVIRONMENTAL FOOTPRINT AND LIFE CYCLE ASSESSMENT OF POLY (LACTIC ACID)
23.1 INTRODUCTION TO LCA AND ENVIRONMENTAL FOOTPRINTS
23.1.1 Life Cycle Assessment
23.1.2 Uncertainty in LCA
23.2 LIFE CYCLE CONSIDERATIONS FOR PLA. 23.2.1 The Life Cycle of PLA
23.2.2 Energy Use and Global Warming
23.2.3 Environmental Trade‐Offs
23.2.4 Waste Management
23.2.5 End of Life
23.3 REVIEW OF BIOPOLYMER LCA STUDIES
23.3.1 Cradle‐to‐Gate and Cradle‐to‐Grave LCAs
23.3.2 End‐of‐Life LCAs
23.4 IMPROVING PLA'S ENVIRONMENTAL FOOTPRINT
23.4.1 Agricultural Management
23.4.2 Feedstock Choice
23.4.3 Energy
23.4.4 Design for End of Life
REFERENCES
24 END‐OF‐LIFE SCENARIOS FOR POLY(LACTIC ACID)
24.1 INTRODUCTION
24.2 TRANSITION FROM A LINEAR TO A CIRCULAR ECONOMY FOR PLASTICS
24.3 WASTE MANAGEMENT SYSTEM
24.4 END‐OF‐LIFE SCENARIOS FOR PLA
24.4.1 Prevention and Source Reduction
24.4.2 Reuse
24.4.3 Recycling
24.4.3.1 Mechanical Recycling
24.4.3.2 Chemical Recycling
24.4.4 Biodegradation. 24.4.4.1 Aerobic Biodegradation—Industrial and Home Composting
24.4.4.2 Anaerobic Biodegradation—Digestion and Conversion to Biogas
24.4.5 Incineration with Energy Recovery
24.4.6 Landfill
24.5 LCA OF END‐OF‐LIFE SCENARIO FOR PLA
24.6 FINAL REMARKS
REFERENCES
25 MEDICAL APPLICATIONS
25.1 INTRODUCTION
25.2 MINIMAL REQUIREMENTS FOR MEDICAL DEVICES. 25.2.1 General
25.2.2 PLA as Medical Implants
25.3 PRECLINICAL AND CLINICAL APPLICATIONS OF PLA DEVICES. 25.3.1 Fibers
25.3.2 Meshes
25.3.3 Bone Fixation Devices
25.3.3.1 Stress Shielding Effect
25.3.3.2 Piezoelectric Effect
25.3.3.3 Screws, Pins, and Rods
25.3.3.4 Plates
25.3.4 Micro‐ and Nanoparticles, and Thin Coatings
25.3.5 Scaffolds
25.4 CONCLUSIONS
REFERENCES
26 PACKAGING AND CONSUMER GOODS
26.1 INTRODUCTION: POLYLACTIC ACID (PLA) IN PACKAGING AND CONSUMER GOODS
26.2 FOOD AND BEVERAGE. 26.2.1 Evolution of PLA in the Food and Beverage Market
26.2.2 Growing Interest in PLA Serviceware
26.3 DISTRIBUTION PACKAGING
26.4 OTHER CONSUMER GOODS: AUTOMOTIVE
26.5 OTHER CONSUMER GOODS
26.6 CHALLENGES AND FINAL REMARKS
REFERENCES
27 TEXTILE APPLICATIONS
27.1 INTRODUCTION
27.2 MANUFACTURING, PROPERTIES, AND STRUCTURE OF PLA FIBERS. 27.2.1 PLA Fiber Manufacture
27.2.2 Properties of PLA Fibers and Textile
27.2.3 Effects of Structure on Properties
27.2.4 PLA Stereocomplex Fibers
27.3 KEY PERFORMANCE FEATURES OF PLA FIBERS. 27.3.1 Biodegradability and the Biodegradation Mechanism
27.3.2 Moisture Management
27.3.3 Antibacterial/Antifungal Properties
27.3.4 Low Flammability
27.3.5 Weathering Stability
27.4 POTENTIAL APPLICATIONS
27.4.1 Geotextiles
27.4.2 Industrial Fabrics
27.4.3 Filters
27.4.4 Towels and Wipes
27.4.5 Home Furnishings
27.4.6 Clothing and Personal Belongings
27.4.7 3D‐Printing Filament
27.5 CONCLUSIONS
REFERENCES
28 ENVIRONMENTAL APPLICATIONS
28.1 INTRODUCTION
28.2 APPLICATION TO WATER AND WASTEWATER TREATMENT. 28.2.1 Application as Sorbents
28.2.2 Application to Nitrogen Removal. 28.2.2.1 Solid‐Phase Denitrification
28.2.2.2 Degradability of the Solid Substrate
28.2.2.3 Denitrification Efficiency
28.2.2.4 Blend‐Supported Nitrogen Removal
28.2.2.5 Biodiversity of Microorganisms Involved
28.3 APPLICATION TO METHANOGENESIS. 28.3.1 Anaerobic Digestion
28.3.2 Methanogenic Microbial Community
28.4 APPLICATION TO BIOREMEDIATION. 28.4.1 Significance of PLA Use
28.4.2 Bioremediation of Organohalogen Pollution
28.4.3 Other Applications
28.5 CONCLUDING REMARKS AND PROSPECTS
ACKNOWLEDGMENTS
REFERENCES
Index
WILEY END USER LICENSE AGREEMENT
Отрывок из книги
Wiley Series on Polymer Engineering and TechnologyRichard F. Grossman and Domasius Nwabunma, Series Editors
Polyolefin Blends Edited by Domasius Nwabunma and Thein Kyu
.....
Shuko Suzuki, The Queensland Eye Institute, South Brisbane, Queensland, Australia
Wataru Takarada, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
.....