Sustainable Nanotechnology

Sustainable Nanotechnology
Автор книги: id книги: 2437104     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 18830,4 руб.     (192,04$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119650317 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Sustainable Nanotechnology A robust examination of the use of nanotechnology in the manufacture of sustainable products In Sustainable Nanotechnology: Strategies, Products, and Applications , a team of distinguished researchers delivers a comprehensive and up-to-date exploration of nanotechnology applications in environmental, pharmaceutical, and engineering products in the context of global sustainability. The book offers balanced coverage of the benefits and risks of nanotechnology. Divided into three parts, the editors have included contributions from leading scholars discussing sustainability, toxicological impacts, and nanomaterial-based adsorbents. This edited volume helps readers understand how nanotechnology and nanomaterials apply in different global sustainability challenges. It also discusses models for understanding the lifecycle and risk assessments of manufactured nanomaterials. Case studies are included to explore such topics as design, remediation, and technology assessment. The book also provides: Thorough introductions to nanotechnology-based research priorities for global sustainability and the challenges and opportunities of modern, sustainable nanotechnology Comprehensive explorations of improving the sustainability of bio-based products with nanotechnology and the improvement of the environmental sustainability of biopolymers using nanotechnology Practical discussions of nanotechnology-based polymers for drug delivery applications In-depth examinations of green nanotechnology-driven drug delivery systems Perfect for nanotechnology-focused professionals, sustainability experts, biomedical experts, and pharmaceutical industry practitioners, Sustainable Nanotechnology: Strategies, Products, and Applications will also earn a place in the libraries of neuroscientists, bioengineering professionals, and those involved in neuroprosthetic engineering.

Оглавление

Группа авторов. Sustainable Nanotechnology

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Sustainable Nanotechnology. Sustainable Nanotechnology

List of Contributors

Preface

Foreword

1 Nanotechnology‐Based Research Priorities for Global Sustainability

1.1 Introduction

1.2 Medicine

1.2.1 Nano Oncology

1.2.1.1 Gold Nanoparticles

1.2.1.2 Quantum Dots

1.2.1.3 Carbon Nanotubes

1.2.2 Drug Delivery

1.2.2.1 Metal‐Based Drug Delivery

1.2.2.2 Biotechnology‐Based Drug Delivery

1.2.3 Biosensors

1.3 Food and Agriculture

1.3.1 Fertilizers

1.3.2 Application in Food Science

1.3.3 Food Packaging

1.3.3.1 Intelligent Packaging

1.3.3.2 Active Packaging

1.4 Human Health and the Environment

1.4.1 Water Purification

1.4.2 Air Purification

1.4.3 Energy

1.4.3.1 Energy Conversion

1.4.3.2 Energy Production

1.4.3.3 Energy Storage

1.5 Industry

1.5.1 Automotive

1.5.2 Construction

1.6 Further Training

1.7 Conclusion

References

2 The Road to Sustainable Nanotechnology: Challenges, Progress, and Opportunities

2.1 Introduction

2.2 Road to Sustainability in Nanotechnology

2.2.1 Accountability of Nanomaterials and Related Toxicity

2.2.1.1 Size

2.2.1.2 Surface Area

2.2.1.3 Surface

2.2.1.4 Shape

2.2.1.5 Composition and Crystalline Structure

2.2.2 Large‐Scale Manufacturing of Sustainable Nanomaterials

2.2.2.1 Type of Approach

2.2.2.2 Types of Nanomaterials

2.2.2.3 Regulatory Requirements for Production

2.3 Development of New Capabilities for Sustainable Environment and Health

2.3.1 Life cycle and Expulsion. 2.3.1.1 Raw Material

2.3.1.2 Processing and Product Development

2.3.1.3 Manufacturing

2.3.1.4 Usage

2.3.1.5 End of Life and Expulsion

2.3.2 Water Purification and Reuse

2.3.3 Food Science Technology

2.3.4 Sustainability of Aquaculture

2.3.5 As Nanobiopesticide

2.3.6 Conservation of Work of Art

2.3.7 Plant Protection Using Nanofibers

2.3.8 Management of Greenhouse Effect

2.3.9 Materials Supply and Utilization

2.3.10 Encapsulation of Fertilizers

2.3.11 Regulatory Development

2.3.11.1 The Possible role of Standards in United Regulation

2.4 Conclusion

References

3 Opportunities and Challenges for Green and Eco‐Friendly Nanotechnology in Twenty‐First Century

3.1 Introduction

3.2 Related Works

3.3 Objectives and Research Methodology

3.4 Global Sustainable Development Goals

3.5 Concept and Characteristics of Ideal Technology

3.6 Contribution of Universal Technologies on Achieving Sustainability Developmental Goals

3.7 Risks Associated with Nanotechnology

3.7.1 Health‐Related Risks

3.7.2 Environmental Related Risks

3.7.3 Social Risks

3.7.4 Economic Risks

3.7.5 Predictive Green Goo

3.8 How Nanotechnology Can Be Made Green and Eco‐Friendly

3.9 Green Nanotechnology in Primary Industry Sector

3.10 Green Nanotechnology (GNT) in Secondary Industry Sector

3.11 Green Nanotechnology in Tertiary Industry Sector

3.12 Green Nanotechnology in Quaternary Industry Sector

3.13 Challenges in Managing Nanotechnology Innovations

3.14 How Green Nanotechnology Is Different and Secured to Achieve All 17 Sustainable Development Goals of UN

3.15 Conclusion

References

4 Improving the Sustainability of Biobased Products Using Nanotechnology

4.1 Introduction

4.2 Biopolymers

4.2.1 Starch

4.2.2 Cellulose

4.2.3 Polylactic Acid

4.2.4 Chitin and Chitosan

4.2.5 Polyhydroxyalkanoate (PHA) and Polyhydroxybutyrate (PHB)

4.3 Nanotechnology in Environmental Remediation

4.4 Methods to Assess Sustainability of Nanotechnology. 4.4.1 Life Cycle Assessment (LCA)

4.4.2 Case Study

4.4.3 Risk Assessment

4.5 Bionanocomposites

4.6 Methods of Production of Bionanocomposites. 4.6.1 Solvent Casting

4.6.2 In Situ Polymerization

4.6.3 Electrospinning

4.6.4 Melt Intercalation

4.7 Applications of Biobased Nanotechnology. 4.7.1 Nanotechnology in Water Remediation

4.7.2 Nanotechnology in Food Packaging

4.7.3 Nanotechnology in Biomedical Applications

4.7.4 Nanotechnology in Agriculture

4.7.5 Nanotechnology in Dye Removal

4.8 Expert Opinion

4.9 Conclusion

References

5 Improving Sustainable Environment of Biopolymers Using Nanotechnology

5.1 Introduction

5.2 Different Class of Biopolymers

5.3 Sources and Preparation of Biopolymers

5.4 Biopolymer Nanoparticles

5.4.1 Protein Nanoparticles

5.4.1.1 Albumin

5.4.1.2 Collagen

5.4.1.3 Gelatin

5.4.1.4 Silk Protein

5.4.1.4.1 Fibroin

5.4.1.4.2 Sericin

5.4.1.5 Keratin

5.4.2 Polysaccharide Nanoparticles

5.4.2.1 Alginate

5.4.2.2 Chitosan

5.5 Fabrication Methodologies

5.5.1 Emulsification

5.5.2 Desolvation

5.5.3 Coacervation

5.5.4 Electrospray Drying

5.6 Nanotechnology and Biopolymer Composites with a Sustainable Approach

5.7 Characterization of Nanoparticles

5.7.1 Particle Size

5.7.1.1 Dynamic Light Scattering

5.7.1.2 Nanoparticle Tracking Analysis

5.7.2 Particle Morphology

5.7.2.1 Scanning Electron Microscope

5.7.2.2 Transmission Electron Microscope

5.7.2.3 Atomic Force Microscopy

5.7.3 Particle Stability

5.7.4 Particle Structure

5.7.4.1 X‐ray Diffraction

5.7.4.2 Fourier Transform Infrared Spectroscopy

5.7.4.3 Cellular Uptake and Cytotoxicity

5.7.4.4 Drug Loading and Drug Release

5.8 Applications of Biopolymers

5.8.1 Biomedical Applications

5.8.2 Food Industry

5.8.3 Packaging Applications

5.8.4 Water Purification

5.9 The Role of Biopolymers for Sustainable Development

5.10 Conclusion

References

6 Toward Eco‐friendly Nanotechnology‐based Polymers for Drug Delivery Applications

6.1 Introduction

6.2 Eco‐friendly Biodegradable Polymers and Their Nanotechnology‐based Drug Delivery Applications

6.2.1 Polylactic Acid (PLA)

6.2.2 Polyglycolic acid (PGA)

6.2.3 Polyhydroxybutyrate (PHB)

6.2.4 Poly Lactic‐co‐glycolic Acid (PLGA)

6.2.5 Poly‐e‐caprolactone (PCL)

6.2.6 Polydioxanone (PDS)

6.2.7 Polyanhydrides

6.2.8 Applications in PLGA‐based Polymers in Drug Delivery Systems

6.2.9 Chitosan

6.2.10 Gelatin

6.2.11 Alginate

6.2.12 Lignin. 6.2.12.1 Introduction

6.2.13 Cellulose Derivatives

6.2.14 Albumin

6.2.15 Dextran

6.2.16 Collagen

6.2.17 Hyaluronic acid

6.2.18 Starch

6.2.19 Guar Gum

6.2.20 Xanthan Gum

6.2.21 Agarose

6.2.22 Silk

6.3 Future Prospects of Eco‐friendly Polymers for Drug Delivery Applications

References

7 Green‐Nanotechnology‐Driven Drug Delivery Systems

7.1 Introduction

7.2 Unique Properties of Nanoparticles

7.3 Greener Synthetic Strategies

7.3.1 Plant Polyphenols and Agricultural Residues

7.3.2 Vitamins

7.3.3 Microwave Heating

7.3.4 Magnetic Nanocatalysts

7.3.5 Nanometal Compounds

7.3.6 Polymer Nanocomposite (PNC)

7.3.7 Biosynthesis of Nanodrug Delivery Vehicles

7.3.8 Carbon Nanotubes – CNTs

7.4 Toxicity Aspects

7.5 Bioinspired Green Nanomaterial Synthesis

7.5.1 Metallic Nanoparticles

7.5.1.1 Gold Nanoparticles

7.5.1.2 Silver Nanoparticles

7.5.1.3 Alloy Nanoparticles

7.5.1.4 Other Metallic Nanoparticles

7.5.2 Oxide Nanoparticles

7.5.2.1 Magnetic Nanoparticles

7.5.2.2 Nonmagnetic Oxide Nanoparticles

7.5.3 Sulfide Nanoparticles

7.5.4 Other Nanoparticles

7.6 Greener and Sustainable (Nano) Solutions for Remediation

7.7 Conclusions

References

8 Green Synthesis of Titanium Dioxide Nanoparticles and Their Applications

8.1 Introduction

8.2 Green Synthesis of TiO2 Nanoparticles From Various Biological Sources

8.3 TiO2 NPs Synthesis Through Bacteria

8.4 TiO2 NPs Synthesis Through Fungi

8.5 TiO2 NPs Synthesis Through Algae and Cyanobacteria

8.6 TiO2 NPs Synthesis Through Plants

8.7 TiO2 NPs Synthesis Through Biological Derivatives

8.8 Applications

8.8.1 Biomedical Field

8.8.2 Antibacterial Activity

8.8.3 Antioxidant Activity

8.8.4 Acaricidal Activity

8.8.5 Anticancer Activity

8.8.6 Photocatalytic Activity in Pollution Control

8.8.7 As Mosquitocides

8.8.8 In Agriculture

8.8.9 Reproduction of Silkworm

Acknowledgments

References

9 Sustainable and Eco‐safe Nanocellulose‐based Materials for Water Nano ‐treatment

9.1 Eco‐safe Materials: Behind a Story

9.1.1 Nanocellulose‐based Materials

9.2 Synthesis of CNS: Original Formulations. 9.2.1 The First Approach

9.2.2 An Evolution in the Formulation

9.3 Structure of CNS: Nano‐dimensioned Fibers to Build a Macroscopic Nano‐structured Material

9.3.1 Macrostructure of the Sponges

9.3.2 Microstructure of the Sponges

9.3.3 Nanostructure of the Sponges

9.4 Early‐stage Life Cycle Assessment: A Tool for a Sustainable CNS Production

9.5 Environmental Safety of Nanoscale Materials

9.5.1 A New Eco‐design Paradigm for CNS Production

9.6 Final Remarks

Acknowledgements

References

10 Nanotechnology Applications in Natural Nanoclays Production and Application for Better Sustainability

10.1 Introduction

10.2 Occurrence and Production of Nanoclays

10.3 Nanoclays for Biomedical Applications. 10.3.1 Biocompatibility of Nanoclays

10.3.2 Nanoclay in Bone Cement

10.3.3 Nanoclay in Tissue Engineering

10.3.4 Nanoclays in Wound Healing Applications

10.3.5 Nanoclays in Enzyme Immobilization

10.3.6 Polymer Nanocomposites: Nanoclays in Drug Delivery

10.3.7 Nanoclays in Food and Beverage Packaging

10.3.8 Biocompatible Functionalization of Nanoclays for Improved Environmental Remediation

10.3.8.1 Nanorobots Constructed from Nanoclay

10.3.8.2 Wastewater Treatment

10.3.9 Nanoclays and Agricultural Sustainable Development

10.3.9.1 Nanofertilizers

10.3.10 Nanoclays for Reducing the Radioactive Contamination

10.4 Conclusions and Prospects

References

11 Eco‐friendly, Biodegradable, and Biocompatible Electrospun Nanofiber Membranes and Applications

11.1 Introduction

11.2 Fabrication of Electrospun Nanofiber‐based Membranes

11.2.1 Electrospinning of PNMs

11.2.1.1 Electrospinning Processes

11.2.1.2 Nanofiber Morphology

11.2.2 Eco‐friendly, Biocompatible, and Biodegradable Materials for Nanofiber Membranes

11.3 Applications of Electrospun Nanofiber Membranes

11.3.1 Nanoenergy Harvesting

11.3.2 Nanofiltration

11.3.3 Nanosensing Health Care

11.3.4 Nanoelectronics

11.3.5 Nanodelivery

11.3.6 Summary

11.4 Future Perspective and Nanocomputing/Data Mining/IoT

11.5 Conclusion

References

12 Plants for Nanomaterial: Improving the Environmental Sustainability

12.1 Nanotechnology: Small Material With Large Potential

12.1.1 Scale of Nanoparticles at Which Much of the Material Properties Occur

12.2 Environmental Sustainability

12.3 Natural Phytoconstituents: A Protective Package for Sustainable Materials

12.3.1 Chemical Nature of Most Phytochemicals

12.3.2 Different Phytochemicals and Their Mode of Action

12.3.3 Mechanism of Action of Phytochemicals

12.4 Green Synthesis of Nanoparticles

12.5 Solvent System‐Based Green Synthesis of Nanoparticles

12.6 Stability and Toxicity of Nanoparticles

12.7 Mechanism of Nanoparticle Synthesis by Plant Extract

12.8 Environmentally Friendly Activity of Green‐Synthesized Nanoparticles. 12.8.1 Antimicrobial Activity

12.8.2 Catalytic Activity

12.8.3 Removal of Pollutant Dyes

12.8.4 Heavy Metal Ion Sensing

12.9 Challenges and Future Scope

12.10 Conclusion

Conflict of Interest Statement

Acknowledgment

References

13 Sustainable Nanobiocomposites

13.1 Nanocomposites and Nanobiocomposites

13.2 Sustainable Nanobiocomposites

13.3 Merits and Demerits of Sustainable Biocomposites

13.4 Classification of Nanobiocomposites

13.4.1 Based on Sources

13.4.1.1 Natural Nanobiocomposites

13.4.1.2 Synthetic Nanobiocomposites

13.4.2 Based on Proportions of the Filler Materials

13.4.2.1 Particulate Nanobiocomposites

13.4.2.2 Elongated Particle Nanobiocomposites

13.4.2.3 Layered Particle‐reinforced Nanobiocomposites

13.4.3 Classification Based on Matrix (Continuous Phase) Used

13.4.3.1 Matrix–Ceramic Nanobiocomposites

13.4.3.2 Polymeric Matrix Nanobiocomposites

13.4.3.3 Metal–Matrix Nanobiocomposites

13.4.4 Classification Based on Polymer Biocomposites

13.4.4.1 Conventional Nanobiocomposites

13.4.4.2 Intercalated Nanobiocomposites

13.4.4.3 Exfoliated Nanobiocomposites

13.5 Natures of Nanobiocomposites

13.5.1 Plant Polysaccharides‐based NBCs

13.5.1.1 Nanocellulose

13.5.1.2 Pectin

13.5.1.3 Starch

13.5.1.4 Guar Gum

13.5.1.5 Alginates

13.5.2 Animal Polysaccharide‐based NBCs. 13.5.2.1 Chitosan

13.5.2.2 Gelatin

13.5.2.3 Collagen

13.5.2.4 Silk

13.5.2.5 Deoxyribonucleic Acid

13.5.3 Aliphatic Polyester‐based NBCs. 13.5.3.1 Polyhydroxyalkanoates (PHAs)

13.5.3.2 PLA‐based NBCs

13.5.3.3 PCL‐based NBCs

13.5.4 Carbon‐based NBCs. 13.5.4.1 Graphene‐based NBCs

13.5.4.2 CNTs‐based Nanobiocomposites

13.6 Sustainable Properties of Nanobiocomposites

13.6.1 Biodegradability

13.6.2 Biocompatibility

13.6.3 Mechanical Properties

13.7 Pharmaceutical Applications of Nanobiocomposites in Drug Delivery Systems

References

14 Role of Eco‐friendly Nanotechnology for Green and Clean Technology

14.1 Nanotechnology

14.2 Nanotechnology and Its Potential Impact on Human Health and Environment

14.2.1 Approaches to Nanomaterial Synthesis/Generation/Formation

14.2.1.1 Physical Approach

14.2.1.2 Chemical Approach

14.2.1.3 Biological Synthesis

14.3 Green Approach to Nanoparticle Synthesis

14.4 Methods of Green Synthesis of Nanoparticles. 14.4.1 From Microorganisms

14.4.1.1 Bacteria

14.4.1.2 Algae

14.4.1.3 Fungi

14.4.1.4 Actinomycetes

14.4.1.5 Yeast

14.4.1.6 Biotemplates‐assisted Biogenesis

14.4.2 Plant‐mediated Biosynthesis

14.4.3 Characterization of Nanoparticles

14.5 Factors Affecting Green Synthesis of Nanoparticles

14.5.1 Application of Green Nanotechnology

14.5.2 Green Methods for Clean and Green Environment

14.5.3 Limitations and Challenges of Green Nanotechnology

14.6 Conclusion

References

15 Risk Assessment and Management of Occupational Exposure to Nanopesticides in Agriculture

15.1 Introduction. 15.1.1 Agriculture

15.2 Pesticides

15.2.1 Understanding Pesticide Benefits

15.2.2 Understanding Pesticide Risks

15.3 Nanopesticides

15.4 Nanoinsecticides

15.5 Nanoherbicides

15.6 Nanofungicides

15.7 Latest Research by Types of Nanopesticides. 15.7.1 Nanoemulsion

15.7.2 Polymer‐based Nanopesticides

15.7.2.1 Nanospheres

15.7.2.2 Nanogels

15.7.2.3 Electrospun Nanofibers

15.7.3 Hybrid Nanoformulation

15.8 Pesticides Risk in Agriculture

15.9 Risk Assessment: Aim and Importance

15.10 Nanopesticides Risk Assessment: Toxicity Testing

15.11 Prevention of Occupational Pesticide Risk

15.12 Strategies for Prevention in the Premarketing Phase

15.13 Strategies for Prevention in the Postmarketing Phase

15.14 Health Risk Management

15.15 Hazard Identification

15.16 Exposure Assessment

15.17 Risk Characterization

15.18 Health Surveillance

15.19 Record Keeping

15.20 Information, Instruction, and Training

15.21 National Plans for Prevention of Pesticide Risk

15.21.1 Central Level

15.21.2 Regional/Province Level

15.22 Encapsulation of Chemical Nanopesticides

15.23 Encapsulated Pesticides: Market Value

References

16 Eco‐friendly Natural Polymers‐based Nanotechnology

16.1 Introduction

16.2 Natural Polymers

16.2.1 Chitosan

16.2.2 Gelatin

16.2.3 Albumin

16.2.4 Starch

16.3 Preparation

16.3.1 Nanoparticles from Dispersion of Preformed Polymer. 16.3.1.1 Solvent Evaporation

16.3.1.2 Nanoprecipitation

16.3.1.3 Salting Out

16.3.1.4 Supercritical Fluid Technology (SCF)

16.3.2 Nanoparticles from Polymerization of Monomers. 16.3.2.1 Emulsion Polymerization

16.3.2.2 Interfacial Polymerization

16.3.2.3 Controlled/Living Radical Polymerization (C/LRP)

16.4 Conclusion

16.5 Future Trends

References

17 Cobalt Oxide‐engineered Nanomaterials for Environmental Remediation

17.1 Introduction

17.2 Applications of Cobalt Oxide Nanoparticles for Environmental Remediation

17.3 Future Perspectives

References

18 Eco‐friendly Nanotechnology in Agriculture: Opportunities, Toxicological Implications, and Occupational Risks

18.1 Introduction

18.2 Nanotechnology‐enabled Agrochemicals

18.2.1 Nanoscale Carriers

18.2.2 Nanobarcode Technology

18.2.3 Nanofertilizers

18.2.3.1 Nanopesticides

18.3 Nanotechnology for Detection and Remediation of Environmental Pollutants

18.3.1 Environmental Monitoring of Toxicants and Pathogens

18.3.2 Nanotechnology for Water and Soil Remediation

18.4 Agriculture Product Accessibility

18.5 Critical Issues of Occupational Risk in Nanoagriculture Field

18.5.1 Risk Assessment

18.5.2 Risk Management

18.5.3 Risk Governance

18.6 IRGC Risk Governance Framework

18.6.1 Future Trends

18.7 Conclusion

References

19 Novel Approaches to Design Eco‐Friendly Materials Based on Natural Nanomaterials

19.1 Introduction

19.2 Adsorbents

19.2.1 Coal

19.2.2 CL‐LDH (Mg‐Al‐Cl‐Layered Double Hydroxide)

19.3 Catalysts

19.3.1 Natural Attapulgiteand Rare Earth Materials

19.3.2 Zero Valent Iron and Clay Minerals

19.4 Polymer Composites

19.4.1 Sodium Alginate Nanocomposites

19.4.2 Elastomer Materials

19.5 Conclusion

19.6 Future Trends

References

20 Biomedical Applications of Nanofibers

20.1 Introduction

20.2 Natural Polymeric‐based Nanofibrils

20.2.1 Collagen

20.2.2 Chitin Nanofibers

20.2.3 Resilin

20.2.4 Silk Fibroin

20.2.5 Elastin

20.2.6 Keratin

20.2.7 Casein

20.2.8 Zein

20.2.9 Cellulose

20.2.10 Alginate

20.2.11 Heparin

20.2.12 Gluten

20.3 Nanofibers with Various Fabrication Techniques

20.4 Biomedical Applications of Nanofibers

20.5 Nanofiber Drug Delivery Systems

20.6 Wound‐healing Applications of Nanofibers

20.7 Nanofibers in Biosensors Applications

20.8 Conclusions and Outlook

References

Abbreviations

21 Environmentally Sustainable and Safe Production of Nanomedicines

21.1 Introduction: Going Green – Advances in Nanomedicines

21.2 Convectional Techniques and Production of Polymeric Nanomedicines Using Bio/synthetic Polymers

21.2.1 Synthesis of Polymeric Nanoparticles from Preformed Polymers

21.2.1.1 Preparation of PNPs from Synthetic Preformed Polymers. 21.2.1.1.1 Emulsification/Solvent Evaporation

21.2.1.1.2 Solvent Displacement/Nanoprecipitation and Interfacial Deposition

21.2.1.1.3 Emulsification/Solvent Diffusion (ESD)

21.2.1.1.4 Salting‐out Technique

21.2.1.1.5 Dialysis

21.2.1.1.6 Supercritical Fluid Technology

21.2.1.1.6.1 Rapid Expansion of Supercritical Solution (RESS)

21.2.1.1.6.2 Rapid Expansion of Supercritical Solution into Liquid Solvent (RESOLV)

21.2.1.2 Preparation of PNPs from Natural Macromolecules

21.2.1.2.1 Alginate Nanoparticles

21.2.1.2.2 Chitosan Nanoparticles

21.2.2 Nanoparticles Obtained by Polymerization of a Monomer

21.2.2.1 Emulsion Polymerization

21.2.2.1.1 Convectional Emulsion Polymerization

21.2.2.1.2 Surfactant‐free Emulsion Polymerization (SFMP)

21.2.2.1.3 Miniemulsion Polymerization

21.2.2.1.4 Microemulsion Polymerization

21.2.2.2 Interfacial Polymerization

21.2.2.3 Controlled/Living Radical Polymerization (C/LRP)

21.2.3 One‐pot Synthesis – An Economic and Time‐saving Approach for Nanomedicines Synthesis

21.3 Eco‐friendly Nanotechnology for Nanomedicines

21.3.1 Nanoparticle Synthesis Using Fungi

21.3.2 Nanoparticle Synthesis Using Bacteria

21.3.3 Nanoparticle Synthesis Using Yeasts

21.3.4 Nanoparticle Synthesis Using Algae

21.3.5 Nanoparticle Synthesis Using Viruses

21.4 Plant‐based Nanomedicines. 21.4.1 Plants – The Paradigm Shift for the Green Synthesis of Nanomaterials

21.4.2 Synthesis Mechanism of Plant‐based Eco‐friendly Nanomaterials

21.5 Conclusion and Future Recommendations

References

Note

Index. a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Edited by

.....

Debjani Nath Department of Zoology University of Kalyani Kalyani Nadia West Bengal India

Prachi Pandey Babaria Institute of Pharmacy BITS Edu campus Vadodara Gujarat India

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Sustainable Nanotechnology
Подняться наверх