Sustainable Nanotechnology
Реклама. ООО «ЛитРес», ИНН: 7719571260.
Оглавление
Группа авторов. Sustainable Nanotechnology
Table of Contents
List of Tables
List of Illustrations
Guide
Pages
Sustainable Nanotechnology. Sustainable Nanotechnology
List of Contributors
Preface
Foreword
1 Nanotechnology‐Based Research Priorities for Global Sustainability
1.1 Introduction
1.2 Medicine
1.2.1 Nano Oncology
1.2.1.1 Gold Nanoparticles
1.2.1.2 Quantum Dots
1.2.1.3 Carbon Nanotubes
1.2.2 Drug Delivery
1.2.2.1 Metal‐Based Drug Delivery
1.2.2.2 Biotechnology‐Based Drug Delivery
1.2.3 Biosensors
1.3 Food and Agriculture
1.3.1 Fertilizers
1.3.2 Application in Food Science
1.3.3 Food Packaging
1.3.3.1 Intelligent Packaging
1.3.3.2 Active Packaging
1.4 Human Health and the Environment
1.4.1 Water Purification
1.4.2 Air Purification
1.4.3 Energy
1.4.3.1 Energy Conversion
1.4.3.2 Energy Production
1.4.3.3 Energy Storage
1.5 Industry
1.5.1 Automotive
1.5.2 Construction
1.6 Further Training
1.7 Conclusion
References
2 The Road to Sustainable Nanotechnology: Challenges, Progress, and Opportunities
2.1 Introduction
2.2 Road to Sustainability in Nanotechnology
2.2.1 Accountability of Nanomaterials and Related Toxicity
2.2.1.1 Size
2.2.1.2 Surface Area
2.2.1.3 Surface
2.2.1.4 Shape
2.2.1.5 Composition and Crystalline Structure
2.2.2 Large‐Scale Manufacturing of Sustainable Nanomaterials
2.2.2.1 Type of Approach
2.2.2.2 Types of Nanomaterials
2.2.2.3 Regulatory Requirements for Production
2.3 Development of New Capabilities for Sustainable Environment and Health
2.3.1 Life cycle and Expulsion. 2.3.1.1 Raw Material
2.3.1.2 Processing and Product Development
2.3.1.3 Manufacturing
2.3.1.4 Usage
2.3.1.5 End of Life and Expulsion
2.3.2 Water Purification and Reuse
2.3.3 Food Science Technology
2.3.4 Sustainability of Aquaculture
2.3.5 As Nanobiopesticide
2.3.6 Conservation of Work of Art
2.3.7 Plant Protection Using Nanofibers
2.3.8 Management of Greenhouse Effect
2.3.9 Materials Supply and Utilization
2.3.10 Encapsulation of Fertilizers
2.3.11 Regulatory Development
2.3.11.1 The Possible role of Standards in United Regulation
2.4 Conclusion
References
3 Opportunities and Challenges for Green and Eco‐Friendly Nanotechnology in Twenty‐First Century
3.1 Introduction
3.2 Related Works
3.3 Objectives and Research Methodology
3.4 Global Sustainable Development Goals
3.5 Concept and Characteristics of Ideal Technology
3.6 Contribution of Universal Technologies on Achieving Sustainability Developmental Goals
3.7 Risks Associated with Nanotechnology
3.7.1 Health‐Related Risks
3.7.2 Environmental Related Risks
3.7.3 Social Risks
3.7.4 Economic Risks
3.7.5 Predictive Green Goo
3.8 How Nanotechnology Can Be Made Green and Eco‐Friendly
3.9 Green Nanotechnology in Primary Industry Sector
3.10 Green Nanotechnology (GNT) in Secondary Industry Sector
3.11 Green Nanotechnology in Tertiary Industry Sector
3.12 Green Nanotechnology in Quaternary Industry Sector
3.13 Challenges in Managing Nanotechnology Innovations
3.14 How Green Nanotechnology Is Different and Secured to Achieve All 17 Sustainable Development Goals of UN
3.15 Conclusion
References
4 Improving the Sustainability of Biobased Products Using Nanotechnology
4.1 Introduction
4.2 Biopolymers
4.2.1 Starch
4.2.2 Cellulose
4.2.3 Polylactic Acid
4.2.4 Chitin and Chitosan
4.2.5 Polyhydroxyalkanoate (PHA) and Polyhydroxybutyrate (PHB)
4.3 Nanotechnology in Environmental Remediation
4.4 Methods to Assess Sustainability of Nanotechnology. 4.4.1 Life Cycle Assessment (LCA)
4.4.2 Case Study
4.4.3 Risk Assessment
4.5 Bionanocomposites
4.6 Methods of Production of Bionanocomposites. 4.6.1 Solvent Casting
4.6.2 In Situ Polymerization
4.6.3 Electrospinning
4.6.4 Melt Intercalation
4.7 Applications of Biobased Nanotechnology. 4.7.1 Nanotechnology in Water Remediation
4.7.2 Nanotechnology in Food Packaging
4.7.3 Nanotechnology in Biomedical Applications
4.7.4 Nanotechnology in Agriculture
4.7.5 Nanotechnology in Dye Removal
4.8 Expert Opinion
4.9 Conclusion
References
5 Improving Sustainable Environment of Biopolymers Using Nanotechnology
5.1 Introduction
5.2 Different Class of Biopolymers
5.3 Sources and Preparation of Biopolymers
5.4 Biopolymer Nanoparticles
5.4.1 Protein Nanoparticles
5.4.1.1 Albumin
5.4.1.2 Collagen
5.4.1.3 Gelatin
5.4.1.4 Silk Protein
5.4.1.4.1 Fibroin
5.4.1.4.2 Sericin
5.4.1.5 Keratin
5.4.2 Polysaccharide Nanoparticles
5.4.2.1 Alginate
5.4.2.2 Chitosan
5.5 Fabrication Methodologies
5.5.1 Emulsification
5.5.2 Desolvation
5.5.3 Coacervation
5.5.4 Electrospray Drying
5.6 Nanotechnology and Biopolymer Composites with a Sustainable Approach
5.7 Characterization of Nanoparticles
5.7.1 Particle Size
5.7.1.1 Dynamic Light Scattering
5.7.1.2 Nanoparticle Tracking Analysis
5.7.2 Particle Morphology
5.7.2.1 Scanning Electron Microscope
5.7.2.2 Transmission Electron Microscope
5.7.2.3 Atomic Force Microscopy
5.7.3 Particle Stability
5.7.4 Particle Structure
5.7.4.1 X‐ray Diffraction
5.7.4.2 Fourier Transform Infrared Spectroscopy
5.7.4.3 Cellular Uptake and Cytotoxicity
5.7.4.4 Drug Loading and Drug Release
5.8 Applications of Biopolymers
5.8.1 Biomedical Applications
5.8.2 Food Industry
5.8.3 Packaging Applications
5.8.4 Water Purification
5.9 The Role of Biopolymers for Sustainable Development
5.10 Conclusion
References
6 Toward Eco‐friendly Nanotechnology‐based Polymers for Drug Delivery Applications
6.1 Introduction
6.2 Eco‐friendly Biodegradable Polymers and Their Nanotechnology‐based Drug Delivery Applications
6.2.1 Polylactic Acid (PLA)
6.2.2 Polyglycolic acid (PGA)
6.2.3 Polyhydroxybutyrate (PHB)
6.2.4 Poly Lactic‐co‐glycolic Acid (PLGA)
6.2.5 Poly‐e‐caprolactone (PCL)
6.2.6 Polydioxanone (PDS)
6.2.7 Polyanhydrides
6.2.8 Applications in PLGA‐based Polymers in Drug Delivery Systems
6.2.9 Chitosan
6.2.10 Gelatin
6.2.11 Alginate
6.2.12 Lignin. 6.2.12.1 Introduction
6.2.13 Cellulose Derivatives
6.2.14 Albumin
6.2.15 Dextran
6.2.16 Collagen
6.2.17 Hyaluronic acid
6.2.18 Starch
6.2.19 Guar Gum
6.2.20 Xanthan Gum
6.2.21 Agarose
6.2.22 Silk
6.3 Future Prospects of Eco‐friendly Polymers for Drug Delivery Applications
References
7 Green‐Nanotechnology‐Driven Drug Delivery Systems
7.1 Introduction
7.2 Unique Properties of Nanoparticles
7.3 Greener Synthetic Strategies
7.3.1 Plant Polyphenols and Agricultural Residues
7.3.2 Vitamins
7.3.3 Microwave Heating
7.3.4 Magnetic Nanocatalysts
7.3.5 Nanometal Compounds
7.3.6 Polymer Nanocomposite (PNC)
7.3.7 Biosynthesis of Nanodrug Delivery Vehicles
7.3.8 Carbon Nanotubes – CNTs
7.4 Toxicity Aspects
7.5 Bioinspired Green Nanomaterial Synthesis
7.5.1 Metallic Nanoparticles
7.5.1.1 Gold Nanoparticles
7.5.1.2 Silver Nanoparticles
7.5.1.3 Alloy Nanoparticles
7.5.1.4 Other Metallic Nanoparticles
7.5.2 Oxide Nanoparticles
7.5.2.1 Magnetic Nanoparticles
7.5.2.2 Nonmagnetic Oxide Nanoparticles
7.5.3 Sulfide Nanoparticles
7.5.4 Other Nanoparticles
7.6 Greener and Sustainable (Nano) Solutions for Remediation
7.7 Conclusions
References
8 Green Synthesis of Titanium Dioxide Nanoparticles and Their Applications
8.1 Introduction
8.2 Green Synthesis of TiO2 Nanoparticles From Various Biological Sources
8.3 TiO2 NPs Synthesis Through Bacteria
8.4 TiO2 NPs Synthesis Through Fungi
8.5 TiO2 NPs Synthesis Through Algae and Cyanobacteria
8.6 TiO2 NPs Synthesis Through Plants
8.7 TiO2 NPs Synthesis Through Biological Derivatives
8.8 Applications
8.8.1 Biomedical Field
8.8.2 Antibacterial Activity
8.8.3 Antioxidant Activity
8.8.4 Acaricidal Activity
8.8.5 Anticancer Activity
8.8.6 Photocatalytic Activity in Pollution Control
8.8.7 As Mosquitocides
8.8.8 In Agriculture
8.8.9 Reproduction of Silkworm
Acknowledgments
References
9 Sustainable and Eco‐safe Nanocellulose‐based Materials for Water Nano ‐treatment
9.1 Eco‐safe Materials: Behind a Story
9.1.1 Nanocellulose‐based Materials
9.2 Synthesis of CNS: Original Formulations. 9.2.1 The First Approach
9.2.2 An Evolution in the Formulation
9.3 Structure of CNS: Nano‐dimensioned Fibers to Build a Macroscopic Nano‐structured Material
9.3.1 Macrostructure of the Sponges
9.3.2 Microstructure of the Sponges
9.3.3 Nanostructure of the Sponges
9.4 Early‐stage Life Cycle Assessment: A Tool for a Sustainable CNS Production
9.5 Environmental Safety of Nanoscale Materials
9.5.1 A New Eco‐design Paradigm for CNS Production
9.6 Final Remarks
Acknowledgements
References
10 Nanotechnology Applications in Natural Nanoclays Production and Application for Better Sustainability
10.1 Introduction
10.2 Occurrence and Production of Nanoclays
10.3 Nanoclays for Biomedical Applications. 10.3.1 Biocompatibility of Nanoclays
10.3.2 Nanoclay in Bone Cement
10.3.3 Nanoclay in Tissue Engineering
10.3.4 Nanoclays in Wound Healing Applications
10.3.5 Nanoclays in Enzyme Immobilization
10.3.6 Polymer Nanocomposites: Nanoclays in Drug Delivery
10.3.7 Nanoclays in Food and Beverage Packaging
10.3.8 Biocompatible Functionalization of Nanoclays for Improved Environmental Remediation
10.3.8.1 Nanorobots Constructed from Nanoclay
10.3.8.2 Wastewater Treatment
10.3.9 Nanoclays and Agricultural Sustainable Development
10.3.9.1 Nanofertilizers
10.3.10 Nanoclays for Reducing the Radioactive Contamination
10.4 Conclusions and Prospects
References
11 Eco‐friendly, Biodegradable, and Biocompatible Electrospun Nanofiber Membranes and Applications
11.1 Introduction
11.2 Fabrication of Electrospun Nanofiber‐based Membranes
11.2.1 Electrospinning of PNMs
11.2.1.1 Electrospinning Processes
11.2.1.2 Nanofiber Morphology
11.2.2 Eco‐friendly, Biocompatible, and Biodegradable Materials for Nanofiber Membranes
11.3 Applications of Electrospun Nanofiber Membranes
11.3.1 Nanoenergy Harvesting
11.3.2 Nanofiltration
11.3.3 Nanosensing Health Care
11.3.4 Nanoelectronics
11.3.5 Nanodelivery
11.3.6 Summary
11.4 Future Perspective and Nanocomputing/Data Mining/IoT
11.5 Conclusion
References
12 Plants for Nanomaterial: Improving the Environmental Sustainability
12.1 Nanotechnology: Small Material With Large Potential
12.1.1 Scale of Nanoparticles at Which Much of the Material Properties Occur
12.2 Environmental Sustainability
12.3 Natural Phytoconstituents: A Protective Package for Sustainable Materials
12.3.1 Chemical Nature of Most Phytochemicals
12.3.2 Different Phytochemicals and Their Mode of Action
12.3.3 Mechanism of Action of Phytochemicals
12.4 Green Synthesis of Nanoparticles
12.5 Solvent System‐Based Green Synthesis of Nanoparticles
12.6 Stability and Toxicity of Nanoparticles
12.7 Mechanism of Nanoparticle Synthesis by Plant Extract
12.8 Environmentally Friendly Activity of Green‐Synthesized Nanoparticles. 12.8.1 Antimicrobial Activity
12.8.2 Catalytic Activity
12.8.3 Removal of Pollutant Dyes
12.8.4 Heavy Metal Ion Sensing
12.9 Challenges and Future Scope
12.10 Conclusion
Conflict of Interest Statement
Acknowledgment
References
13 Sustainable Nanobiocomposites
13.1 Nanocomposites and Nanobiocomposites
13.2 Sustainable Nanobiocomposites
13.3 Merits and Demerits of Sustainable Biocomposites
13.4 Classification of Nanobiocomposites
13.4.1 Based on Sources
13.4.1.1 Natural Nanobiocomposites
13.4.1.2 Synthetic Nanobiocomposites
13.4.2 Based on Proportions of the Filler Materials
13.4.2.1 Particulate Nanobiocomposites
13.4.2.2 Elongated Particle Nanobiocomposites
13.4.2.3 Layered Particle‐reinforced Nanobiocomposites
13.4.3 Classification Based on Matrix (Continuous Phase) Used
13.4.3.1 Matrix–Ceramic Nanobiocomposites
13.4.3.2 Polymeric Matrix Nanobiocomposites
13.4.3.3 Metal–Matrix Nanobiocomposites
13.4.4 Classification Based on Polymer Biocomposites
13.4.4.1 Conventional Nanobiocomposites
13.4.4.2 Intercalated Nanobiocomposites
13.4.4.3 Exfoliated Nanobiocomposites
13.5 Natures of Nanobiocomposites
13.5.1 Plant Polysaccharides‐based NBCs
13.5.1.1 Nanocellulose
13.5.1.2 Pectin
13.5.1.3 Starch
13.5.1.4 Guar Gum
13.5.1.5 Alginates
13.5.2 Animal Polysaccharide‐based NBCs. 13.5.2.1 Chitosan
13.5.2.2 Gelatin
13.5.2.3 Collagen
13.5.2.4 Silk
13.5.2.5 Deoxyribonucleic Acid
13.5.3 Aliphatic Polyester‐based NBCs. 13.5.3.1 Polyhydroxyalkanoates (PHAs)
13.5.3.2 PLA‐based NBCs
13.5.3.3 PCL‐based NBCs
13.5.4 Carbon‐based NBCs. 13.5.4.1 Graphene‐based NBCs
13.5.4.2 CNTs‐based Nanobiocomposites
13.6 Sustainable Properties of Nanobiocomposites
13.6.1 Biodegradability
13.6.2 Biocompatibility
13.6.3 Mechanical Properties
13.7 Pharmaceutical Applications of Nanobiocomposites in Drug Delivery Systems
References
14 Role of Eco‐friendly Nanotechnology for Green and Clean Technology
14.1 Nanotechnology
14.2 Nanotechnology and Its Potential Impact on Human Health and Environment
14.2.1 Approaches to Nanomaterial Synthesis/Generation/Formation
14.2.1.1 Physical Approach
14.2.1.2 Chemical Approach
14.2.1.3 Biological Synthesis
14.3 Green Approach to Nanoparticle Synthesis
14.4 Methods of Green Synthesis of Nanoparticles. 14.4.1 From Microorganisms
14.4.1.1 Bacteria
14.4.1.2 Algae
14.4.1.3 Fungi
14.4.1.4 Actinomycetes
14.4.1.5 Yeast
14.4.1.6 Biotemplates‐assisted Biogenesis
14.4.2 Plant‐mediated Biosynthesis
14.4.3 Characterization of Nanoparticles
14.5 Factors Affecting Green Synthesis of Nanoparticles
14.5.1 Application of Green Nanotechnology
14.5.2 Green Methods for Clean and Green Environment
14.5.3 Limitations and Challenges of Green Nanotechnology
14.6 Conclusion
References
15 Risk Assessment and Management of Occupational Exposure to Nanopesticides in Agriculture
15.1 Introduction. 15.1.1 Agriculture
15.2 Pesticides
15.2.1 Understanding Pesticide Benefits
15.2.2 Understanding Pesticide Risks
15.3 Nanopesticides
15.4 Nanoinsecticides
15.5 Nanoherbicides
15.6 Nanofungicides
15.7 Latest Research by Types of Nanopesticides. 15.7.1 Nanoemulsion
15.7.2 Polymer‐based Nanopesticides
15.7.2.1 Nanospheres
15.7.2.2 Nanogels
15.7.2.3 Electrospun Nanofibers
15.7.3 Hybrid Nanoformulation
15.8 Pesticides Risk in Agriculture
15.9 Risk Assessment: Aim and Importance
15.10 Nanopesticides Risk Assessment: Toxicity Testing
15.11 Prevention of Occupational Pesticide Risk
15.12 Strategies for Prevention in the Premarketing Phase
15.13 Strategies for Prevention in the Postmarketing Phase
15.14 Health Risk Management
15.15 Hazard Identification
15.16 Exposure Assessment
15.17 Risk Characterization
15.18 Health Surveillance
15.19 Record Keeping
15.20 Information, Instruction, and Training
15.21 National Plans for Prevention of Pesticide Risk
15.21.1 Central Level
15.21.2 Regional/Province Level
15.22 Encapsulation of Chemical Nanopesticides
15.23 Encapsulated Pesticides: Market Value
References
16 Eco‐friendly Natural Polymers‐based Nanotechnology
16.1 Introduction
16.2 Natural Polymers
16.2.1 Chitosan
16.2.2 Gelatin
16.2.3 Albumin
16.2.4 Starch
16.3 Preparation
16.3.1 Nanoparticles from Dispersion of Preformed Polymer. 16.3.1.1 Solvent Evaporation
16.3.1.2 Nanoprecipitation
16.3.1.3 Salting Out
16.3.1.4 Supercritical Fluid Technology (SCF)
16.3.2 Nanoparticles from Polymerization of Monomers. 16.3.2.1 Emulsion Polymerization
16.3.2.2 Interfacial Polymerization
16.3.2.3 Controlled/Living Radical Polymerization (C/LRP)
16.4 Conclusion
16.5 Future Trends
References
17 Cobalt Oxide‐engineered Nanomaterials for Environmental Remediation
17.1 Introduction
17.2 Applications of Cobalt Oxide Nanoparticles for Environmental Remediation
17.3 Future Perspectives
References
18 Eco‐friendly Nanotechnology in Agriculture: Opportunities, Toxicological Implications, and Occupational Risks
18.1 Introduction
18.2 Nanotechnology‐enabled Agrochemicals
18.2.1 Nanoscale Carriers
18.2.2 Nanobarcode Technology
18.2.3 Nanofertilizers
18.2.3.1 Nanopesticides
18.3 Nanotechnology for Detection and Remediation of Environmental Pollutants
18.3.1 Environmental Monitoring of Toxicants and Pathogens
18.3.2 Nanotechnology for Water and Soil Remediation
18.4 Agriculture Product Accessibility
18.5 Critical Issues of Occupational Risk in Nanoagriculture Field
18.5.1 Risk Assessment
18.5.2 Risk Management
18.5.3 Risk Governance
18.6 IRGC Risk Governance Framework
18.6.1 Future Trends
18.7 Conclusion
References
19 Novel Approaches to Design Eco‐Friendly Materials Based on Natural Nanomaterials
19.1 Introduction
19.2 Adsorbents
19.2.1 Coal
19.2.2 CL‐LDH (Mg‐Al‐Cl‐Layered Double Hydroxide)
19.3 Catalysts
19.3.1 Natural Attapulgiteand Rare Earth Materials
19.3.2 Zero Valent Iron and Clay Minerals
19.4 Polymer Composites
19.4.1 Sodium Alginate Nanocomposites
19.4.2 Elastomer Materials
19.5 Conclusion
19.6 Future Trends
References
20 Biomedical Applications of Nanofibers
20.1 Introduction
20.2 Natural Polymeric‐based Nanofibrils
20.2.1 Collagen
20.2.2 Chitin Nanofibers
20.2.3 Resilin
20.2.4 Silk Fibroin
20.2.5 Elastin
20.2.6 Keratin
20.2.7 Casein
20.2.8 Zein
20.2.9 Cellulose
20.2.10 Alginate
20.2.11 Heparin
20.2.12 Gluten
20.3 Nanofibers with Various Fabrication Techniques
20.4 Biomedical Applications of Nanofibers
20.5 Nanofiber Drug Delivery Systems
20.6 Wound‐healing Applications of Nanofibers
20.7 Nanofibers in Biosensors Applications
20.8 Conclusions and Outlook
References
Abbreviations
21 Environmentally Sustainable and Safe Production of Nanomedicines
21.1 Introduction: Going Green – Advances in Nanomedicines
21.2 Convectional Techniques and Production of Polymeric Nanomedicines Using Bio/synthetic Polymers
21.2.1 Synthesis of Polymeric Nanoparticles from Preformed Polymers
21.2.1.1 Preparation of PNPs from Synthetic Preformed Polymers. 21.2.1.1.1 Emulsification/Solvent Evaporation
21.2.1.1.2 Solvent Displacement/Nanoprecipitation and Interfacial Deposition
21.2.1.1.3 Emulsification/Solvent Diffusion (ESD)
21.2.1.1.4 Salting‐out Technique
21.2.1.1.5 Dialysis
21.2.1.1.6 Supercritical Fluid Technology
21.2.1.1.6.1 Rapid Expansion of Supercritical Solution (RESS)
21.2.1.1.6.2 Rapid Expansion of Supercritical Solution into Liquid Solvent (RESOLV)
21.2.1.2 Preparation of PNPs from Natural Macromolecules
21.2.1.2.1 Alginate Nanoparticles
21.2.1.2.2 Chitosan Nanoparticles
21.2.2 Nanoparticles Obtained by Polymerization of a Monomer
21.2.2.1 Emulsion Polymerization
21.2.2.1.1 Convectional Emulsion Polymerization
21.2.2.1.2 Surfactant‐free Emulsion Polymerization (SFMP)
21.2.2.1.3 Miniemulsion Polymerization
21.2.2.1.4 Microemulsion Polymerization
21.2.2.2 Interfacial Polymerization
21.2.2.3 Controlled/Living Radical Polymerization (C/LRP)
21.2.3 One‐pot Synthesis – An Economic and Time‐saving Approach for Nanomedicines Synthesis
21.3 Eco‐friendly Nanotechnology for Nanomedicines
21.3.1 Nanoparticle Synthesis Using Fungi
21.3.2 Nanoparticle Synthesis Using Bacteria
21.3.3 Nanoparticle Synthesis Using Yeasts
21.3.4 Nanoparticle Synthesis Using Algae
21.3.5 Nanoparticle Synthesis Using Viruses
21.4 Plant‐based Nanomedicines. 21.4.1 Plants – The Paradigm Shift for the Green Synthesis of Nanomaterials
21.4.2 Synthesis Mechanism of Plant‐based Eco‐friendly Nanomaterials
21.5 Conclusion and Future Recommendations
References
Note
Index. a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
WILEY END USER LICENSE AGREEMENT
Отрывок из книги
Edited by
.....
Debjani Nath Department of Zoology University of Kalyani Kalyani Nadia West Bengal India
Prachi Pandey Babaria Institute of Pharmacy BITS Edu campus Vadodara Gujarat India
.....