Isotopic Constraints on Earth System Processes

Isotopic Constraints on Earth System Processes
Автор книги: id книги: 2437195     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 19304,9 руб.     (196,88$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119594963 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Isotopic Constraints on Earth System Processes Isotopic Constraints on Earth System Processes From establishing the absolute age of the Earth to providing a stronger understanding of the nexus between geology and life, the careful measurement and quantitative interpretation of minor variations in the isotopic composition of Earth’s materials has provided profound insight into the origins and workings of our planet. Isotopic Constraints on Earth System Processes presents examples of the application of numerous different isotope systems to address a wide range of topical problems in Earth system science. Volume highlights include: examination of the natural fractionation of non-traditional stable isotopes utilizing isotopes to understand the origin of magmas and evolution of volcanic systems application of isotopes to interrogate and understand Earth’s Carbon and Oxygen cycles examination of the geochemical and hydrologic processes that lead to isotopic fractionation application of isotopic reactive transport models to decipher hydrologic and biogeochemical processes The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Оглавление

Группа авторов. Isotopic Constraints on Earth System Processes

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Geophysical Monograph Series

Geophysical Monograph 273. Isotopic Constraints on Earth System Processes

LIST OF CONTRIBUTORS

PREFACE

PART I: HIGH‐TEMPERATURE/DEEP EARTH PROCESSES

PART II: LOW‐TEMPERATURE/SHALLOW EARTH PROCESSES

REFERENCES

ABOUT THE COMPANION WEBSITE

DEDICATION

1 High‐Temperature Kinetic Isotope Fractionation of Silicate Materials

ABSTRACT

1.1. INTRODUCTION

1.2. DIFFUSION IN MULTI‐COMPONENT CONDENSED SYSTEMS: THEORY AND DEFINITIONS. 1.2.1. Fick’s Laws and the Diffusion Matrix

1.2.2. Effective Binary Diffusion Coefficients

1.2.3. Self‐Diffusion Coefficients

1.2.4. Thermal (Soret) Diffusion Coefficients

1.3. KINETIC ISOTOPE FRACTIONATION DURING DIFFUSION BETWEEN NATURAL MELTS

1.3.1. Laboratory Experiments Documenting Ca Isotope Fractionation by Diffusion Between Molten Rhyolite and Basalt

1.3.2. Isotope Fractionation between Melts from a Natural Setting

1.4. ISOTOPE FRACTIONATION BY SORET DIFFUSION

1.4.1. The Soret Coefficient

1.4.2. Soret Isotope Fractionation in Silicate Liquids

1.5. ISOTOPE FRACTIONATION BY DIFFUSION IN SILICATE MINERALS

1.5.1. Experiments documenting Lithium Isotopic Fractionation by Diffusion in Pyroxene

1.5.2. Natural Examples of Lithium Zoning and Isotopic Fractionation by Diffusion in Pyroxenes

1.5.3. Lithium Isotopic Fractionation by Diffusion in Olivine

1.5.4. Fe‐Mg zoning and Fe and Mg Isotopic Fractionation in Olivine

1.6. ISOTOPE FRACTIONATION BY EVAPORATION FROM SILICATE MELTS

1.6.1. The Hertz‐Knudsen Evaporation Equation

1.6.2. Rayleigh Fractionation

1.6.3. High‐Temperature Vacuum Evaporation Experiments

1.6.4. Evidence of Evaporation in Natural CAIs from Chondritic Meteorites

1.7. SUMMARY

1.8. THOUGHTS ON FURTHER RESEARCH

REFERENCES

2 Ca and K Isotope Fractionation by Diffusion in Molten Silicates: Large Concentration Gradients Are Not Required to Induce Large Diffusive Isotope Effects

ABSTRACT

2.1. INTRODUCTION

2.2. METHODS. 2.2.1. Experiments

2.2.2. Electron Microprobe Analyses

2.2.3. Ca Isotopic Measurements

2.2.4. K Isotopic Measurements

2.3. RESULTS. 2.3.1. Major Element Diffusion Profiles

2.3.2. Ca and K Isotopes

2.4. DISCUSSION

2.5. MODELING

2.5.1. General Multicomponent Diffusion

2.5.2. The Zhang (1993) Modified Effective Binary Diffusion Model

Model Validation and Behavior

Model Applied to the Rhyolite‐Phonolite Couples

Model for the Isotope Ratio Profiles

2.5.3. Comparison to Previous Studies

2.6. CONCLUSIONS AND POSSIBLE FUTURE APPLICATIONS

APPENDIX LINEAR VERSUS EXPONENTIAL DEPENDENCE OF ACTIVITY ON SIO2

ACKNOWLEDGMENTS

REFERENCES

3 Calcium Isotope Constraints on Recycled Carbonates in Subduction‐Related Magmas

ABSTRACT

3.1. INTRODUCTION

3.2. ANALYTICAL METHODS AND SAMPLES. 3.2.1. Double‐spike Thermal Ionization Mass Spectrometry Calcium Isotope Measurements

3.2.2. Igneous Samples Characterized for Calcium Isotope Composition

3.3. RESULTS

3.4. DISCUSSION. 3.4.1. Calcium Isotopic Record of Marine Carbonates

3.4.2. Calcium Isotopic Record of Mantle‐Derived Rocks

3.4.3. Calcium Isotopes Exhibit no Evidence for Carbonate Sediment Recycling at Subduction Zones

3.4.4. Mantle Source(s) of Calcium in Carbonatite Magmas

3.4.5. Origin of the Light Calcium Isotope Composition of Laacher See and other Intrusive Carbonatites

3.5. CONCLUSIONS

ACKNOWLEDGMENTS

REFERENCES

4 Reassessing the Role of Continental Lithospheric Mantle in Cenozoic Magmatism, Southwestern North America

ABSTRACT

4.1. INTRODUCTION

4.2. GEOLOGIC BACKGROUND & GENERAL TERMINOLOGY. 4.2.1. Cenozoic Geologic History of SWNA

4.2.2. Definition of Continental Lithospheric Mantle

4.3. METHODS/DATA

4.4. RESULTS

4.5. DISCUSSION. 4.5.1. Do Nd Isotope Data Support a CLM Source for Mafic Volcanic Rocks in SWNA?

4.5.2. Isotopic Composition of CLM from Xenolith Studies

Comparison of Basalt and Mantle Xenolith Isotopic Compositions

4.5.3. Cenozoic Metasomatism of CLM

Low εNd (T), Low Ta/Th Volcanic Rocks

4.5.4. Physical Evolution of Deep Lithosphere

Destruction of Mantle Lithosphere

4.6. CONCLUSIONS

ACKNOWLEDGMENTS

REFERENCES

5 Rhyolite Ignimbrite Generation in the Northern Andes: The Chalupas Caldera, Ecuador

ABSTRACT

5.1. INTRODUCTION

5.2. GEOLOGICAL SETTING AND AGE OF THE CHALUPAS CALDERA

5.3. GEOCHEMICAL RESULTS. 5.3.1. Analytical Techniques

5.3.2. Major Element Geochemistry

5.3.3. Trace Element Geochemistry

5.3.4. Isotope Geochemistry

5.3.5. Metamorphic Basement Rocks of the Eastern Cordillera

5.4. EVOLUTION OF THE CHALUPAS MAGMATIC SYSTEM. 5.4.1. Role of Fractional Crystallization

5.4.2. The Role of Crustal Assimilation

5.4.3. Modeling Results

5.4.4. Model Discussion

5.4.5. Assimilation and Crustal Thickness

5.5. CRUSTAL STRUCTURE, MAGMA SUPPLY, AND TRANSPORT

5.5.1. Crustal and Magma Density

5.5.2. Temperature Considerations

5.5.3. Subduction Zone Magma Supply and Magmatic Timescales

5.5.4. Timescales of Transport and Assimilation

5.6. CHALUPAS ERUPTION VOLUME AND MAGMA SUPPLY

5.7. SUMMARY AND CONCLUSIONS

APPENDIX 5A Appendix

Pre‐Caldera Lavas

Chalupas Ignimbrite

Post‐Caldera Lavas

Summary of Age Data

APPENDIX 5B MINERAL CHEMISTRY AND PETROGRAPHIC DESCRIPTIONS

5B.1. Pre‐Caldera Lavas

5B.2. Post‐Caldera Lavas

5B.3. Chalupas Ignimbrite

5B.4. Lithics from the Chalupas Ignimbrite

APPENDIX 5C MODELS FOR CRYSTAL FRACTIONATION, ASSIMILATION-FRACTIONAL CRYSTALLIZATION, AND MAGMA FLUXES. 5C.1. Quantitative Estimation of Crystal Fractionation Effects

5C.2. Assimilation‐Fractional Crystallization (AFC) Model Details

5C.3. Relationship between f and Crustal Fraction (fc) in the AFC Model

5C.4. Magma Supply Considerations

5C.5. Magma Supply Requirements

5C.6. Diapir Formation and Transport through the Lower and Mid‐Crust

ACKNOWLEDGMENTS

REFERENCES

6 Xenolith Constraints on “Self‐Assimilation” and the Origin of Low δ18O Values in Mauna Kea Basalts

ABSTRACT

6.1. INTRODUCTION

6.2. SAMPLES AND ANALYTICAL METHODS

6.2.1. EPMA Analysis of Mineral Major Element Composition

6.2.2. Clinopyroxene Trace Element Analysis by LA‐ICP‐MS

6.2.3. Oxygen Isotope Analysis by Laser Fluorination Gas Source Mass Spectrometry

6.2.4. Strontium‐Nd‐Pb Isotope Analysis by TIMS and MC‐ICP‐MS

6.3. RESULTS

6.4. DISCUSSION. 6.4.1. Constraints on Parental Melts of Mauna Kea Xenoliths

6.4.2. Constraints on The P‐T Conditions Of Xenolith Formation and Later Re‐Equilibration

6.4.3. Role of Pacific Crust Assimilation and Edifice Self‐Assimilation

6.4.4. Oxygen Isotope Compositional Variability in the Hawaiian Plume?

6.4.5. Significance of Self‐Assimilation for Interpretation of Geochemical Signatures in Hawaiian Basalts

6.5. CONCLUSIONS

ACKNOWLEDGMENTS

REFERENCES

SUPPLEMENTAL DATA

7 Monitoring Volcanic Activity Through Combined Measurements of CO2 Efflux and (222Rn) and (220Rn) in Soil Gas: An Application to Mount Etna, Italy

ABSTRACT

7.1. INTRODUCTION

7.2. BACKGROUND. 7.2.1. Mt. Etna Volcanic Activity During 2006 to 2009

Phase 1

Phase 2

Phase 3

Phase 4

7.2.2. Prior Work Utilizing Coupled 220Rn/222Rn and CO2 Efflux Measurements on Mt. Etna

7.3. SAMPLING STRATEGY AND ANALYTICAL METHODS. 7.3.1. Sampling Strategy

7.3.2. Soil 222Rn and 220Rn Measurements

7.3.3. Soil CO2 Concentration and Efflux Measurements

7.3.4. Carbon Isotope Measurements

7.4. SYNOPSIS OF THIS STUDY’S RESULTS. 7.4.1. Coupled CO2 Efflux and (220Rn/222Rn)

7.4.2. Carbon Isotopes

7.5. THE SOIL GAS DISEQUILIBRIUM INDEX (SGDI)

7.6. RELATIONSHIP BETWEEN FILTERED SGDI DATA AND VOLCANIC ACTIVITY OF MT. ETNA

7.6.1. Modelling

7.6.2. Comparison of SGDI to Other Monitoring Proxies

7.7. SUMMARY

APPENDIX STATISTICAL TREATMENT OF SGDI DATA. Cluster Analysis and Spatial Distributions

Analysis of SGDI Time Series

Definition of Anomalies in the SGDI Time Series

ACKNOWLEDGMENTS

REFERENCES

8 The Carbon Isotope Record and Earth Surface Oxygenation

ABSTRACT

8.1. INTRODUCTION

8.2. THE CARBON ISOTOPE BUDGET

8.3. forg AND THE OXYGEN BUDGET

8.4. OXYGEN SINKS IN A LOW‐OXYGEN WORLD

8.4.1. Carbon as a Precambrian Oxygen Sink

8.4.2. Sulfur as a Precambrian Oxygen Sink

8.4.3. Iron as a Precambrian Oxygen Sink

8.4.4. Other Precambrian Oxygen Sinks

8.5. RESOLVING THE pO2 – forg PARADOX

8.6. PREDICTIONS OF THE AUTHIGENIC FEEDBACK HYPOTHESIS

8.7. CONCLUSIONS

REFERENCES

9 Detrital Garnet Geochronology: A New Window into Ancient Tectonics and Sedimentary Provenance

ABSTRACT

9.1. INTRODUCTION AND MOTIVATION

9.2. THEORETICAL FEASIBILITY OF DETRITAL GARNET GEOCHRONOLOGY

9.2.1. Age Precision vs. Single Garnet Grain Diameter

9.2.2. Age Accuracy: Blanks

9.2.3. Age Accuracy: Second Point on the Isochron

9.3. DETAILED METHODOLOGY

9.3.1. Sample Processing Prior to Chemical Analysis. Sample Collection and Garnet Separation

Pre‐Rinse Protocol for Surface Contaminant Removal

Major Element Garnet Chemistry and Grain Selection. SEM surface analysis

Grain selection and preparation

9.3.2. Partial Dissolution: Leaching out the Inclusions

Hydrofluoric Acid Partial Dissolution

Perchloric Acid Partial Dissolution

Nitric Acid Partial Dissolution

9.3.3. Full Dissolution of Pure Garnet Residue

9.3.4. Column Chemistry

9.3.5. Thermal Ionization Mass Spectroscopy

9.3.6. Blank Correction

9.3.7. Age Determination

9.4. CASE STUDIES

9.4.1. Preliminary Work: Multi‐Grain Detrital Garnet Ages in Beach Sand from Hampton Beach, New Hampshire

9.4.2. Bulk vs. Detrital Garnet Methodology Test: Townshend Dam, Vermont

Methodology

Results and Interpretation

9.4.3. Single‐Grain Detrital Garnet Ages in Stream Alluvium: Townshend Dam, Vermont

Methodology

Results and Interpretation

9.4.4. Single‐Grain Detrital Garnet in Stream Alluvium: Southern Appalachians

9.4.5. Dating Detrital Garnet in Sedimentary Rocks: Scotland

Methodology

Results and Interpretation

9.5. CONCLUSION

ACKNOWLEDGMENTS

REFERENCES

10 A Review of the Development of Cr, Se, U, Sb, and Te Isotopes as Indicators of Redox Reactions, Contaminant Fate, and Contaminant Transport in Aqueous Systems

ABSTRACT

10.1. INTRODUCTION

10.2. MASS SPECTROMETRY AND SAMPLE PREPARATION METHODS

10.2.1. Mass Spectrometry. Double Spike and Hydride Generation Techniques

Chromium Mass Spectrometry

Selenium Mass Spectrometry

Uranium Mass Spectrometry

Antimony Mass Spectrometry

Tellurium Mass Spectrometry

10.2.2. Sample Preparation. Chromium Sample Preparation

Se Sample Preparation

Uranium Sample Preparation

Antimony and Tellurium Sample Preparation

10.3. CURRENT UNDERSTANDING OF ISOTOPIC FRACTIONATION

10.3.1. Equilibrium Fractionation Theory and Calculations

10.3.2. Kinetic Fractionation

10.3.3. Time Scales for Attainment of Equilibrium

10.3.4. Experimental Determinations of Isotopic Fractionation

Reduction‐Driven Isotopic Fractionation

Oxidation‐Driven Isotopic Fractionation

Adsorption‐Driven Isotopic Fractionation

Volatilization and other Processes

10.4. APPLICATIONS OF CR, U, AND SE ISOTOPE MEASUREMENTS

10.4.1. Chromium Isotopes

10.4.2. Uranium Isotope Applications

10.4.3. Selenium Isotope Applications

10.4.4. Te and Sb Isotope Field Data

10.5. REACTIVE TRANSPORT MODELS: AN ESSENTIAL PART OF THE SCIENCE

10.5.1. Rayleigh Distillation Models and their Limitations

10.5.2. Application to Heavy Isotopes in Laboratory and Natural Environments

10.5.3. Beyond Rayleigh: Heavy Isotopes in Reactive Transport Frameworks

10.6. CONCLUSIONS AND OUTLOOK

APPENDIX

ACKNOWLEDGMENTS

REFERENCES

11 The Effects of Reactive Transport on Sulfur Isotopic Compositions in Natural Environments

ABSTRACT

11.1. MOTIVATION

11.2. SULFUR ISOTOPE INTRODUCTION

11.2.1. Constraining the Sulfur Isotope Fractionation Factor

11.2.2. Variation in the Sulfur Isotope Fractionation Factor

11.2.3. A Case Study

11.3. REACTIVE TRANSPORT EFFECTS ON SULFUR ISOTOPE‐SIGNATURES. 11.3.1. An Example of Marine Sedimentary Profiles

11.3.2. An Example of Aquifers

11.4. SUMMARY

REFERENCES

12 A Reactive Transport Framework Describing Covariation in the Isotopic Ratios of Multiple Elements in Natural Systems

ABSTRACT

12.1. MOTIVATION

12.1.1. Open Systems

12.1.2. Multi‐Isotope Analysis

12.1.3. Multi‐Isotopic Reactive Transport Modeling

12.2. A SYNTHETIC MODEL STUDY OF PAIRED ISOTOPE SIGNATURES

12.2.1. Basic Model Setup

12.2.2. Structurally Heterogeneous Flow Fields

12.2.3. Point Sources

12.2.4. Point Sources with Dilution

12.3. SUMMARY

REFERENCES

13 Stable Ca Isotope Fractionation in Cenozoic Marine Mammals: Beyond Biomineralization and Trophic Positioning

ABSTRACT

13.1. INTRODUCTION

13.2. BACKGROUND. 13.2.1. Stable Ca Isotope Fractionation in Nature

13.2.2. Bowhead Whales: Evolution, Ontogenesis, and Ecology

13.3. METHODS. 13.3.1. Sample Collection

13.3.2. Structural Material Analytical Techniques

13.3.3 Baleen Material Analytical Techniques

13.3.4. Defining the Window of Trophic Discrimination

13.4. RESULTS. 13.4.1. Marine Mammal Bone Material

13.4.2. Bowhead Whale Baleen Material

13.5. DISCUSSION

13.5.1. Fossil Marine Mammal Excursion

13.5.2. Modern Odontocete Excursion

13.5.3. Modern Mysticete Excursion

Variations in Fractionation Factor

Isotopically Heavy Prey

Low Ca Concentrations of Prey

Stable Ca Fractionation During Baleen Growth

Other Anomalous Ca Isotope Measurements

13.6 CONCLUSIONS

APPENDIX 13A MARINE MAMMAL BONE ANALYSIS. 13 A.1. Structural Material Sample Preparation

13 A.2. Sample Purification and Matrix Separation

13 A.3. Sample Introduction and Analysis

APPENDIX 13B BALEEN ANALYSIS I. 13 B.1. Baleen Material Sample Preparation

13 B.2. Sample Purification and Matrix Separation

13 B.3. Sample Introduction and Analysis

13 B.4. Initial Measurement of Sample 2012‐B5

APPENDIX 13C BALEEN ANALYSIS II

ACKNOWLEDGMENTS

REFERENCES

INDEX

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

212 The Early Earth: Accretion and Differentiation James Badro and Michael Walter (Eds.)

.....

270 Muography: Exploring Earth’s Subsurface with Elementary Particles László Oláh, Hiroyuki K. M. Tanaka, and Dezso˝ Varga (Eds.)

271 Remote Sensing of Water‐Related Hazards Ke Zhang, Yang Hong, and Amir AghaKouchak (Eds.)

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Isotopic Constraints on Earth System Processes
Подняться наверх