Metaheuristics for Robotics

Metaheuristics for Robotics
Автор книги: id книги: 1887582     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 15938,7 руб.     (156,75$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Программы Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119706991 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

This book is dedicated to the application of metaheuristic optimization in trajectory generation and control issues in robotics. In this area, as in other fields of application, the algorithmic tools addressed do not require a comprehensive list of eligible solutions to effectively solve an optimization problem. This book investigates how, by reformulating the problems to be solved, it is possible to obtain results by means of metaheuristics. Through concrete examples and case studies – particularly related to robotics – this book outlines the essentials of what is needed to reformulate control laws into concrete optimization data. The resolution approaches implemented – as well as the results obtained – are described in detail, in order to give, as much as possible, an idea of metaheuristics and their performance within the context of their application to robotics.

Оглавление

Hamouche Oulhadj. Metaheuristics for Robotics

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Metaheuristics for Robotics

Preface

Introduction

1. Optimization: Theoretical Foundations and Methods. 1.1. The formalization of an optimization problem

1.2. Constrained optimization methods

1.2.1. The method of Lagrange multipliers

1.2.1.1. Necessary optimality conditions

1.2.1.2. Necessary and sufficient conditions

1.2.2. Method of the quadratic penalization

1.2.3. Methods of interior penalties

1.2.4. Methods of exterior penalties

1.2.5. Augmented Lagrangian method

1.3. Classification of optimization methods

1.3.1. Deterministic methods

1.3.1.1. Heuristics

1.3.1.2. Analytical methods

1.3.2. Stochastic methods

1.3.2.1. Monte Carlo methods

1.3.2.2. Metaheuristics

1.3.2.2.1. Neighborhood search metaheuristics

1.3.2.2.2. Population-based metaheuristics

1.4. Conclusion

1.5. Bibliography

2. Metaheuristics for Robotics. 2.1. Introduction

2.2. Metaheuristics for trajectory planning problems

2.2.1. Path planning

2.2.1.1. Planning within the joint space

2.2.1.2. Planning in the Cartesian space

2.2.1.3. Hybrid planning: joint space -> Cartesian space

2.2.1.4. Hybrid planning: Cartesian space -> joint space

Particle swarm algorithm

Evolutionary algorithms

2.2.2. Trajectory generation

2.3. Metaheuristics for automatic control problems

2.4. Conclusion

2.5. Bibliography

3. Metaheuristics for Constrained and Unconstrained Trajectory Planning. 3.1. Introduction

3.2. Obstacle avoidance

3.3. Bilevel optimization problem

3.4. Formulation of the trajectory planning problem

3.4.1. Objective functions

3.4.2. Constraints

3.5. Resolution with a bigenetic algorithm

3.6. Simulation with the model of the Neuromate robot

3.6.1. Geometric model of the Neuromate robot

3.6.2. Kinematic model of the Neuromate robot

3.6.3. Simulation results

3.7. Conclusion

3.8. Bibliography

4. Metaheuristics for Trajectory Generation by Polynomial Interpolation. 4.1. Introduction

4.2. Description of the problem addressed

4.3. Formalization

4.3.1. Criteria

4.3.2. Constraints

4.4. Resolution

4.4.1. Augmented Lagrangian

4.4.2. Genetic operators

4.4.2.1. Selection operator

4.4.2.2. Crossover operator

4.4.2.3. Mutation operator

4.4.3. Solution coding

4.5. Simulation results

4.6. Conclusion

4.7. Bibliography

5. Particle Swarm Optimization for Exoskeleton Control1. 5.1. Introduction

5.2. The system and the problem under consideration. 5.2.1. Representation and model of the system under consideration

5.2.2. The problem under consideration

5.3. Proposed control algorithm

5.3.1. The standard PSO algorithm

5.3.2. Proposed control approach

5.4. Experimental results

5.5. Conclusion

5.6. Bibliography

Conclusion

Index. A, B, C

D, E, F

G, H, I

J, L, M

N, O, P

Q, R, S

T, W

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Optimization Heuristics Set

coordinated by

.....

November 2019

This book is organized into five chapters.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Metaheuristics for Robotics
Подняться наверх