Основы статистического обучения. Интеллектуальный анализ данных, логический вывод и прогнозирование

Основы статистического обучения. Интеллектуальный анализ данных, логический вывод и прогнозирование
Авторы книги: id книги: 1687999     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0

Ниже по кнопкам можно купить бумажную книгу в интернет-магазинах по самым выгодным ценам с доставкой в Москве, Санкт-Петербурге и других городах России!

Смотреть на сайте Лабиринта Купить в других магазинах Бумажная книга Жанр: Правообладатель и/или издательство: Вильямс Дата публикации, год издания: 2020 Дата добавления в каталог КнигаЛит: ISBN: 978-5-907144-42-2

Реклама. ООО "ЛАБИРИНТ.РУ", ИНН: 7728644571, erid: LatgC8Csm.

Описание книги

В книге излагаются основы статистического обучения для решения практических задач, возникающих в медицине, биологии, финансах и многих других отраслях науки и промышленности. В частности, рассматриваются основные понятия и методы статистического обучения: линейная регрессия, нелинейная регрессия, линейные методы классификации, регуляризация, ядерное сглаживание, оценивание и выбор моделей, аддитивные модели, деревья классификации, нейронные сети, случайные леса и многое другое. Авторы приводят множество примеров и иллюстраций применения этих методов на практике. Авторы книги являются выдающимися авторитетами в математической статистике и машинном обучении: Тревор Хасти — обладатель звания ISI Highly Cited Author in Mathematics по версии ISI Web of Knowledge, Роберт Тибширани — изобретатель метода LASSO и обладатель Золотой медали Статистического общества Канады, Джером Фридман — широко известный специалист по машинному обучению и автор многочисленных монографий. Книга представляет огромный интерес для специалистов. В течение последнего десятилетия произошел взрыв в области вычислений и информационных технологий. Вместе с ним появились огромные объемы данных в различных областях, таких как медицина, биология, финансы и маркетинг. Проблема понимания этих данных привела к разработке новых статистических инструментов и породила новые научные дисциплины, такие как интеллектуальный анализ данных, машинное обучение и биоинформатика. Многие из этих инструментов имеют общие научные основания, но часто описываются с помощью другой терминологии. В настоящей книге описываются важные идеи в этих областях с единой теоретической точки зрения. Хотя этот подход является статистическим, упор делается на концепции, а не на математику. Приводится много примеров с широким использованием цветной графики. Книга представляет собой ценный источник информации для статистиков и всех, кто интересуется интеллектуальным анализом данных в науке или промышленности. Охват книги широк: от обучения с учителем (прогнозирования) до обучения без учителя. В ней описаны нейронные сети, метод опорных векторов, деревья классификации и бустинг, который впервые всесторонне рассмотрен в книге, а не в отдельных публикациях. В данном глубоко переработанном издании представлены многие темы, не охваченные в первом издании, включая графовые модели, случайные леса, ансамблевые методы, алгоритмы регрессии наименьших углов и алгоритмы построения траекторий для методов LASSO, неотрицательной факторизации матриц и спектральной кластеризации. В книге также есть глава о методах анализа "широких" данных (когда p больше, чем n), включая множественное тестирование и долю ложных отклонений гипотезы. Книга обсуждается в отдельном сообщении в блоге Виктора Штонда. Об авторах Тревор Хасти, Роберт Тибширани и Джером Фридман — профессора статистики в Стэнфордском университете. Они являются выдающимися исследователями в этой области. В частности, Хасти и Тибширани разработали обобщенные аддитивные модели и написали популярную книгу с таким названием. Хасти в составе коллектива разработчиков разработал значительную часть программного обеспечения и среды для статистического моделирования на языках R и S-PLUS, а также изобрел метод главных кривых и поверхностей. Тибширани изобрел метод LASSO и является соавтором очень успешной книги An Introduction to the Bootstrap. Фридман является соавтором многих методов интеллектуального анализа данных, в том числе CART, MARS, поиска наилучшей проекции и градиентного бустинга. 2-е издание.

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Основы статистического обучения. Интеллектуальный анализ данных, логический вывод и прогнозирование
Подняться наверх