Plant Nucleotide Metabolism

Plant Nucleotide Metabolism
Автор книги: id книги: 1887900     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 19146,7 руб.     (186,66$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Биология Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119476078 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

All organisms produce nucleobases, nucleosides, and nucleotides of purines and pyrimidines. However, while there have been a number of texts on nucleotide metabolism in microorganisms and humans, the presence of these phenomena in plant life has gone comparatively unexplored. This ground-breaking new book is the first to focus exclusively on the aspects of purine nucleotide metabolism and function that are particular to plants, making it a unique and essential resource. The authors provide a comprehensive break down of purine nucleotide structures and metabolic pathways, covering all facets of the topic. Furthermore, they explain the role that purine nucleotides can play in plant development, as well as the effects they may have on human health when ingested. Plant Nucleotide Metabolism offers a unique and important resource to all students, researchers, and lecturers working in plant biochemistry, physiology, chemistry, agricultural sciences, nutrition, and associated fields of research.

Оглавление

Hiroshi Ashihara. Plant Nucleotide Metabolism

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Plant Nucleotide Metabolism – Biosynthesis, Degradation, and Alkaloid Formation

Preface

1 Structures of Nucleotide-Related Compounds. 1.1 Introduction

1.2 Nomenclature and Abbreviations of Nucleotide-Related Compounds

1.3 Chemical Structures of Nucleotide-Related Compounds

1.3.1 Purines

1.3.1.1 Purine Bases

1.3.1.2 Purine Nucleosides

1.3.1.3 Purine Nucleotides

1.3.2 Pyrimidines

1.3.2.1 Pyrimidine Bases

1.3.2.2 Pyrimidine Nucleosides

1.3.2.3 Pyrimidine Nucleotides

1.3.3 Pyridines

1.4 Summary

References

2 Occurrence of Nucleotides and Related Metabolites in Plants. 2.1 Purines and Pyrimidines

2.1.1 Concentration of Purine and Pyrimidine Nucleotides

2.1.2 Concentration of Purine and Pyrimidine Bases and Nucleosides

2.2 Pyridine Nucleotides. 2.2.1 Concentration of Pyridine Nucleotides

2.2.2 Concentration of Nicotinate and Nicotinamide

2.3 Concentration of Cytokinins

2.4 Alkaloids Derived from Nucleotides

2.5 Summary

References

3 General Aspects of Nucleotide Biosynthesis and Interconversions

3.1 Introduction

3.2 De Novo Biosynthesis of Ribonucleoside Monophosphates

3.3 Interconversion of Nucleoside Monophosphates, Nucleoside Diphosphates, and Triphosphates

3.3.1 Nucleoside-Monophosphate Kinase

3.3.2 Specific Nucleoside-Monophosphate Kinases

3.4 Conversion of Nucleoside Diphosphates to Nucleoside Triphosphates

3.4.1 ATP Synthesis by Electron Transfer Systems

3.4.2 Substrate-Level ATP Synthesis

3.4.3 Nucleoside-Diphosphate Kinase

3.5 Biosynthesis of Deoxyribonucleotides

3.6 Nucleic Acid Biosynthesis

3.7 Supply of 5-Phosphoribosyl-1-Pyrophosphate

3.8 Supply of Amino Acids for Nucleotide Biosynthesis

3.9 Nitrogen Metabolism and Amino Acid Biosynthesis in Plants

3.10 Summary

References

4 Purine Nucleotide Biosynthesis De Novo. 4.1 Introduction

4.2 Reactions and Enzymes

4.2.1 Synthesis of Phosphoribosylamine

4.2.2 Synthesis of Glycineamide Ribonucleotide

4.2.3 Synthesis of Formylglycineamide Ribonucleotide

4.2.4 Synthesis of Formylglycinamidine Ribonucleotide

4.2.5 Synthesis of Aminoimidazole Ribonucleotide

4.2.6 Synthesis of Aminoimidazole Carboxylate Ribonucleotide

4.2.7 Synthesis of Aminoimidazole Succinocarboxamide Ribonucleotide

4.2.8 Synthesis of Aminoimidazole Carboxamide Ribonucleotide

4.2.9 Synthesis of IMP via Formamidoimidazole Carboxamide Ribonucleotide

4.2.10 Synthesis of AMP

4.2.11 Synthesis of GMP

4.3 Summary

References

5 Salvage Pathways of Purine Nucleotide Biosynthesis. 5.1 Introduction

5.2 Characteristics of Purine Salvage in Plants

5.3 Properties of Purine Phosphoribosyltransferases

5.3.1 Adenine Phosphoribosyltransferase

5.3.2 Hypoxanthine/Guanine Phosphoribosyltransferase

5.3.3 Xanthine Phosphoribosyltransferase

5.4 Properties of Nucleoside Kinases

5.4.1 Adenosine Kinase

5.4.2 Inosine/Guanosine Kinase

5.4.3 Deoxyribonucleoside Kinases

5.5 Properties of Nucleoside Phosphotransferase

5.6 Role of Purine Salvage in Plants

5.7 Summary

References

6 Interconversion of Purine Nucleotides. 6.1 Introduction

6.2 Deamination Reactions

6.2.1 Routes of Deamination of Adenine Ring

6.2.2 AMP Deaminase

6.2.3 Routes of Deamination of Guanine Ring

6.2.4 Guanosine Deaminase

6.3 Dephosphorylation Reactions

6.4 Glycosidic Bond Cleavage Reactions

6.4.1 Adenosine Nucleosidase

6.4.2 Inosine/Guanosine Nucleosidase

6.4.3 Non-specific Purine Nucleosidases

6.4.4 Recombinant Non-Specific Nucleosidases

6.5 In Situ Metabolism of 14C-Labelled Purine Nucleotides

6.5.1 Metabolism of Adenine Nucleotides

6.5.2 Metabolism of Guanine Nucleotides

6.6 In Situ Metabolism of Purine Nucleosides and Bases

6.6.1 Metabolism of Adenine and Adenosine

6.6.2 Metabolism of Guanine and Guanosine

6.6.3 Metabolism of Hypoxanthine and Inosine

6.6.4 Metabolism of Xanthine and Xanthosine

6.6.5 Metabolism of Deoxyadenosine and Deoxyguanosine

6.7 Summary

References

7 Degradation of Purine Nucleotides. 7.1 Introduction

7.2 (S)-Allantoin Biosynthesis from Xanthine

7.2.1 Xanthine Dehydrogenase

7.2.2 Urate Oxidase

7.2.3 Allantoin Synthase

7.3 Catabolism of (S)-Allantoin

7.3.1 Allantoinase

7.3.2 Allantoate Amidohydrolase

7.3.3 (S)-Ureidoglycine Aminohydrolase

7.3.4 Allantoate Amidinohydrolase

7.3.5 Ureidoglycolate Amidohydrolase

7.3.6 (S)-Ureidoglycolate-urea Lyase

7.3.7 Urease

7.4 Purine Nucleotide Catabolism in Plants

7.5 Accumulation and Utilization of Ureides in Plants. 7.5.1 Ureides in Plant Tissues and Xylem Sap

7.5.2 Role of Ureides in Nitrogen Storage and Transport

7.5.3 Role of Ureides in Germination and Development of Seeds

7.5.4 Ureide Formation in Nodules of Tropical Legumes

7.5.5 Other Role of Ureides in Plants

7.6 Summary

References

8 Pyrimidine Nucleotide Biosynthesis De Novo. 8.1 Introduction

8.2 Reactions and Enzymes of the De Novo Biosynthesis

8.2.1 Synthesis of Carbamoyl-phosphate

8.2.2 Formation of Carbamoyl-aspartate

8.2.3 Formation of Dihydroorotase from Carbamoyl-aspartate

8.2.4 Formation of Orotate from Dihydroorotate

8.2.5 Synthesis of UMP from Orotate

8.2.6 Synthesis of CTP from UTP

8.3 Control Mechanism of De Novo Pyrimidine Ribonucleotide Biosynthesis

8.3.1 Fine Control of the De Novo Pathway

8.3.2 Coarse Control of the De Novo Pathway

8.4 Biosynthesis of Thymidine Nucleotide. 8.4.1 Formation of dUMP

8.4.2 Conversion of UMP to dUMP via dUTP

8.4.3 Conversion of dUMP to dTMP

8.4.4 Thymidine Monophosphate Kinase

8.5 Summary

References

9 Salvage Pathways of Pyrimidine Nucleotide Biosynthesis. 9.1 Introduction

9.2 Characteristics of Pyrimidine Salvage in Plants

9.3 Enzymes of Pyrimidine Salvage

9.3.1 Uracil Phosphoribosyl Transferase

9.3.2 Uridine/Cytidine Kinase

9.3.3 Thymidine Kinase

9.3.4 Deoxyribonucleoside Kinase

9.3.5 Nucleoside Phosphotransferase

9.4 Role of Pyrimidine Salvage in Plants

9.5 Summary

References

10 Interconversion of Pyrimidine Nucleotides. 10.1 Introduction

10.2 Deaminase Reactions

10.2.1 Cytidine Deaminase

10.2.2 Cytosine Deaminase

10.2.3 Deoxycytidylate Deaminase

10.3 Nucleosidase and Phosphorylase Reactions

10.3.1 Uridine Nucleosidase

10.3.2 Thymidine Phosphorylase

10.4 In Situ Metabolism of 14C-Labelled Pyrimidines

10.4.1 Metabolic Fate of Orotate

10.4.2 Metabolic Fate of Uridine and Uracil

10.4.3 Metabolic Fate of Cytidine and Cytosine

10.4.4 Metabolic Fate of Deoxycytidine

10.4.5 Metabolic Fate of Thymidine

10.5 Summary

References

11 Degradation of Pyrimidine Nucleotides. 11.1 Introduction

11.2 Enzymes Involved in the Degradation Routes of Pyrimidines

11.2.1 Dihydropyrimidine Dehydrogenase

11.2.2 Dihydropyrimidinase

11.2.3 β-Ureidopropionase

11.3 The Metabolic Fate of Uracil and Thymine

11.4 Summary

References

12 Growth and Development

12.1 Introduction

12.2 Embryo Maturation

12.3 Germination

12.3.1 Purine Metabolism in Germination

12.3.2 Pyrimidine Metabolism in Germination

12.4 Organogenesis

12.5 Breaking Bud Dormancy

12.6 Fruit Ripening

12.7 Storage Organ Development and Sprouting

12.8 Suspension-Cultured Cells

12.8.1 Nucleotide Pools

12.8.2 Nucleotide Biosynthesis

12.8.3 Nucleotide Availability

12.9 Molecular Studies

12.10 Summary

References

13 Environmental Factors and Nucleotide Metabolism. 13.1 Introduction

13.2 Effect of Phosphate on Nucleotide Metabolism

13.3 Effect of Salts on Nucleotide Metabolism

13.4 Effect of Water Stress

13.5 Effect of Wound Stress

13.6 Effect of Iron Deficiency

13.7 Effect of Light

13.8 Summary

References

14 Occurrence of Purine Alkaloids. 14.1 Introduction

14.2 Chemical Structure of Purine Alkaloids

14.3 Occurrence of Purine Alkaloids in Plants

14.3.1 Purine Alkaloids in Tea and Related Species

14.3.2 Purine Alkaloids in Coffee and Related Species

14.3.3 Purine Alkaloids in Maté

14.3.4 Purine Alkaloids in Cacao and Related Species

14.3.5 Purine Alkaloids in Cola Species

14.3.6 Purine Alkaloids in Guaraná and Related Species

14.3.7 Purine Alkaloids in Citrus Species

14.3.8 Purine Alkaloids in Other Plants

14.4 Summary

References

15 Biosynthesis of Purine Alkaloids. 15.1 Introduction

15.2 A Brief History of Caffeine Biosynthesis Research

15.3 Caffeine Biosynthesis Pathway

15.3.1 N-Methyltransferase Nomenclature

15.3.2 Formation of 7-Methylxanthine from Xanthosine

15.3.3 7-Methylxanthosine Synthase

15.3.4 N-Methylnucleosidase

15.3.5 Formation of Caffeine from 7-Methylxanthine

15.3.6 Caffeine Synthase

15.3.7 Theobromine Synthase

15.4 Genes and Proteins of Caffeine Synthase Family

15.5 Xanthosine Biosynthesis from Purine Nucleotides

15.5.1 De Novo Purine Route

15.5.2 Adenosine Monophosphate Route

15.5.3 S-Adenosyl-L-methionine Cycle Route

15.5.4 Nicotinamide Adenine Diphosphate Catabolism Route

15.5.5 Guanosine Monophosphate Route

15.6 Summary

References

16 Physiological and Ecological Aspects of Purine Alkaloid Biosynthesis. 16.1 Introduction

16.2 Physiology of Caffeine Biosynthesis

16.2.1 Purine Alkaloid Biosynthesis in Different Species

16.2.2 Camellia

16.2.3 Coffea

16.2.4 Theobroma

16.2.5 Maté

16.2.6 Guaraná

16.2.7 Citrus

16.3 Subcellular Localization of Caffeine Biosynthesis

16.3.1 Caffeine Synthase

16.3.2 The De Novo Route Enzymes

16.3.3 The AMP Route Enzymes

16.3.4 The SAM Route Enzymes

16.3.5 Subcellular Localization and Transport of Intermediates

16.4 Regulation of Caffeine Biosynthesis

16.5 Ecological Roles of Caffeine

16.5.1 Allelopathic Function Theory

16.5.2 Effect of Caffeine on Plant Growth

16.5.3 Allelopathy in Natural Ecosystems

16.5.4 Chemical Defence Theory

16.6 Summary

References

17 Metabolism of Purine Alkaloids and Biotechnology. 17.1 Introduction

17.2 Metabolism of Purine Alkaloids. 17.2.1 Methylurate Biosynthesis

17.2.2 The Major Pathway of Caffeine Degradation

17.2.3 Purine Catabolic Pathways in Alkaloid Plants

17.3 Diversity of Purine Alkaloid Metabolism in Plants. 17.3.1 Coffea Species

17.3.2 Camellia Species

17.3.3 Maté Species

17.3.4 Cacao Species

17.3.5 Other Plant Species

17.3.6 Bacteria

17.4 Biotechnology of Purine Alkaloids

17.4.1 Decaffeinated Coffee Plants

17.4.2 Decaffeinated Tea Plants

17.5 Caffeine-Producing Transgenic Plants

17.5.1 Antiherbivore Activity

17.5.2 Antipathogen Activity

17.6 Summary

References

18 Pyridine (Nicotinamide Adenine) Nucleotide Biosynthesis De Novo. 18.1 Introduction

18.2 Two Distinct Pathways of De Novo Nicotinate Mononucleotide Biosynthesis

18.3 The Outline of the De Novo Pathway of NAD Biosynthesis in Plants

18.4 Enzymes Involved in De Novo NAD Synthesis in Plants

18.4.1 L-Aspartate Oxidase and Quinolinate Synthase

18.4.2 Quinolinate Phosphoribosyltransferase

18.4.3 Nicotinate Mononucleotide Adenylyltransferase

18.4.4 NAD Synthetase

18.4.5 NAD Kinase

18.5 Summary

References

19 Pyridine Nucleotide Cycle. 19.1 Introduction

19.2 Pyridine Nucleotide Cycle

19.2.1 Major Pyridine Nucleotide Cycles in Plants

19.2.2 Alternative Pyridine Nucleotide Cycles in Plants

19.2.3 Rate-Limiting Step of the Pyridine Cycle

19.3 Catabolism of NAD. 19.3.1 Reactions from NAD to Nicotinate

19.3.2 Degradation of Pyrimidine Ring

19.3.3 Nicotinate Conversion to Nicotinate-N-Glucoside and N-Methylnicotinate

19.4 Enzymes Involved in NAD Catabolism. 19.4.1 Direct NAD Cleavage Enzymes

19.4.2 NAD Pyrophosphatase

19.4.3 5′-Nucleotidase and Nicotinamide Riboside Nucleosidase

19.4.4 Nicotinamidase and Nicotinamide Riboside Deaminase

19.5 Salvage of Nicotinamide and Nicotinate

19.5.1 Nicotinate Phosphoribosyltransferase

19.5.2 Nicotinate Riboside Kinase

19.6 Summary

References

20 Occurrence and Biosynthesis of Pyridine Alkaloids. 20.1 Introduction

20.2 Occurrence of Pyridine Alkaloids. 20.2.1 Trigonelline in Plants

20.2.2 Other Pyridine Alkaloids in Plants

20.3 Biosynthesis of Pyridine Alkaloids

20.3.1 Trigonelline Biosynthesis

20.3.2 Nicotinate N-Glucoside Biosynthesis

20.3.3 The Diversity of Biosynthetic Reactions

20.3.3.1 Ferns

20.3.3.2 Gymnosperms

20.3.3.3 Angiosperms

20.3.3.4 Nicotinate Conjugate Formation

20.3.4 Biosynthesis of Ricinine

20.3.5 Biosynthesis of Nicotine (Pyridine Ring)

20.4 Summary

References

21 Physiological Aspect and Biotechnology of Trigonelline. 21.1 Introduction

21.2 Physiological Aspect of Trigonelline Biosynthesis. 21.2.1 Coffee

21.2.2 Leguminous Plants

21.3 Physiological Aspects of Nicotinate N-Glucoside Biosynthesis

21.4 The Role of Trigonelline in Plants

21.4.1 Role of Trigonelline as a Nutrient Source

21.4.2 Role of Trigonelline as a Compatible Solute

21.4.3 Trigonelline and Nyctinasty

21.4.4 Cell Cycle Regulation

21.4.5 Detoxification of Nicotinate

21.4.6 Signal Transduction

21.4.7 Role of Host Selection by Herbivores

21.5 Biotechnology of Trigonelline

21.6 Summary

References

22 Sugar Nucleotides. 22.1 Introduction

22.2 The Sugar Nucleotide Moiety

22.3 Enzymes of Sugar Nucleotide Biosynthesis

22.3.1 UDP-Glucose Pyrophosphorylase

22.3.2 UDP-Sugar Pyrophosphorylase

22.3.3 Sucrose Synthase

22.4 Localization of UDP-Glucose-Producing Enzymes

22.5 UDP-Glucose-Interconversion

22.6 Other Metabolites

22.6.1 Cyclic Nucleotides

22.6.2 Diadenosine Tetraphosphate

22.6.3 Purine Alkaloid Glucosides

22.7 Summary

References

23 Cytokinins. 23.1 Introduction

23.2 Adenosine Phosphate-Isopentenyl Formation

23.3 trans-Zeatin Phosphate Synthesis

23.4 Formation of Cytokinin Bases

23.5 Effect of Nucleotide Enzymes in Cytokinins. 23.5.1 Cytokinin Inactivation by Adenine Phosphoribosyltransferase

23.5.2 Homeostasis of Cytokinin by Adenosine Kinase

23.5.3 Endodormancy of Potato and Purine Nucleoside Phosphorylase

23.6 New Purine-Related Plant Growth Regulators

23.7 Summary

References

24 Bioavailability and Potential Impact on Human Health of Caffeine, Theobromine, and Trigonelline. 24.1 Caffeine. 24.1.1 Dietary Caffeine

24.1.2 Bioavailability and Bioactivity of Caffeine

24.2 Theobromine. 24.2.1 Interactions with Flavan-3-ols

24.2.2 Toxicity of Theobromine

24.3 Trigonelline. 24.3.1 Dietary Trigonelline

24.3.2 Bioavailability and Bioactivity of Trigonelline

24.4 Summary

References

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Hiroshi Ashihara

Ochanomizu University

.....

Biosynthesis of RNA is catalysed by RNA polymerase (DNA-directed RNA polymerase, EC 2.7.7.6). The reaction is:

RNA polymerase, locally, opens the double-stranded DNA (usually about four turns of the double helix) so that one strand of the exposed nucleotides can be used as a template for the synthesis of RNA, namely transcription. A transcription factor and its associated transcription mediator complex must be attached to a DNA binding site, a promoter region, before RNA polymerase can initiate the DNA unwinding at that position. RNA polymerase has intrinsic helicase activity, therefore, no additional enzyme is required to unwind the DNA, in contrast to DNA polymerase. RNA polymerase, not only initiates RNA transcription, it also guides the nucleotides into position, facilitates attachment and elongation, has intrinsic proof reading and replacement capabilities, and a termination recognition function. In eukaryotes, RNA polymerase can build chains as long as 2.4 million nucleotides.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Plant Nucleotide Metabolism
Подняться наверх