Organic Electronics for Electrochromic Materials and Devices

Organic Electronics for Electrochromic Materials and Devices
Автор книги: id книги: 2038728     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 18858,7 руб.     (184,36$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Отраслевые издания Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9783527830626 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Explore this comprehensive overview of organic electrochromic materials and devices from a leading voice in the industry  Organic Electronics for Electrochromic Materials and Devices  delivers a complete discussion of the major and key topics related to the phenomenon of electrochromism. The text covers the history of organic electrochromism, its fundamental principles, different types of electrochromic materials, the development of device structures and multi-function devices, characterizations of device performance, modern applications of electrochromic devices, and prospects for future electrochromic devices.  The distinguished author places a strong focus on recent research results from universities and private firms from around the world and addresses the issues and challenges faced by those who apply organic electrochromic technology in the real world. With these devices quickly becoming the go-to display technology in the field of electronic information, this resource will quickly become indispensable to all who work or study in the field of optics.  Readers will also benefit from the inclusion of:  A thorough introduction to organic electrochromism, including its history and the mechanisms of electrochromic devices An exploration of polymer electrolytes for electrochromic applications, including their requirements and types A discussion of electrochromic small molecules, including the development of technology in conjugated polymer and violene-cyanine hybrids A treatment of Prussian blue and metallohexacyanates, including their backgrounds, technology development, crystal structures, synthesis, nanocomposites, and assembled electrochromic devices Perfect for materials scientists, polymer chemists, organic chemists, physical chemists, and inorganic chemists,  Organic Electronics for Electrochromic Materials and Devices  will also earn a place in the libraries of physicists and those who work in the optical industry who seek a one-stop reference that covers all aspects of organic electrochromic materials.

Оглавление

Hong Meng. Organic Electronics for Electrochromic Materials and Devices

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Organic Electronics for Electrochromic Materials and Devices

Preface

About the Author

1 Introduction. 1.1 General Introduction

1.2 The History of Electrochromic Materials

1.3 The Key Parameters of Electrochromism

1.3.1 Electrochromic Contrast

1.3.2 Switching Time

1.3.3 Coloration Efficiency

1.3.4 Optical Memory

1.3.5 Stability

1.4 Conclusion

References

2 Advances in Polymer Electrolytes for Electrochromic Applications. 2.1 Introduction

2.2 Requirements of Polymer Electrolytes in Electrochromic Applications

2.3 Types of Polymer Electrolytes

2.3.1 Gel Polymer Electrolytes (GPEs)

2.3.1.1 PEO‐/PEG‐Based Electrolytes

2.3.1.2 PMMA‐Based Polymer Electrolytes

2.3.1.3 PVDF‐Based Polymer Electrolytes

2.3.2 Self‐Healing Polymer Electrolytes

2.3.3 Cross‐linking Polymer Electrolytes (CPEs)

2.3.4 Ceramic Polymer Electrolytes

2.3.5 Ionic Liquid Polymer Electrolytes

2.3.6 Gelatin‐Based Polymer Electrolytes

2.4 Conclusion and Future Outlook

References

3 Electrochromic Small Molecules. 3.1 Background of Small Molecule Electrochromic

3.2 Technology Development of Small Molecule Electrochromic Materials

3.3 Violene–Cyanine Hybrids (AIE PL OEC)

3.4 Terephthalate Derivatives (Multicolor OEC)

3.4.1 Conclusion

3.5 Isophthalate Derivatives

3.5.1 Conclusion

3.6 Methyl Ketone Derivatives

3.6.1 Conclusion

3.7 Diphenylacetylenes

3.8 Fluoran Dye Derivatives

3.9 PH‐Responsive Molecule Derivatives

3.10 TPA Dye Derivatives

3.11 Hydrocarbon Derivatives‐NIR‐OEC

3.12 Conclusions and Perspective

References

4 Viologen OEC. 4.1 The Introduction of OEC and Viologen. 4.1.1 General Introduction

4.1.2 Research History of Viologen

4.1.2.1 First Stage (1930s–1970s)

4.1.2.2 Second Stage (1970s–2000s)

4.1.2.3 Third Stage (2000s–2010s)

4.1.2.4 Fourth Stage (2010s–Present)

4.1.3 Electrochromism and Electrochemistry of Viologens and Their Device

4.2 Different Structures of Viologen‐Based Electrochromic Materials. 4.2.1 Synthesis of Viologens

4.2.1.1 Direct Substitution Reaction

4.2.1.2 Zincke Reaction

4.2.1.3 Methods for Synthesizing Bipyridine

4.2.2 The 1,1′‐Substituted Viologen. 4.2.2.1 Simple Alkyl

4.2.2.2 Acid Group

4.2.2.3 Ester and Nitrogen Heterocycle

4.2.2.4 Asymmetric Substitution

4.2.3 Conjugate Ring System Expansion. 4.2.3.1 Thiazolothiazole (TTz) Unit

4.2.3.2 Perylenediimide (PDI) Unit

4.2.3.3 PBEDOTPh

4.2.3.4 Heteroatoms Bridged

4.2.3.5 Bithiophene Bridged

4.2.4 Viologen‐Based Polymer

4.2.4.1 Viologen in the Side Chain

4.2.4.2 Viologen in the Main Chain

4.3 Viologen Electrochromic Device. 4.3.1 Device Structure. 4.3.1.1 Five‐Layer Classic Structure

4.3.1.2 Simple Sandwich Structure

4.3.1.3 Cathodic Anode Separation Structure

4.3.1.4 Reflective Device Structure

4.3.2 Electrolyte

4.3.3 Redox Mediator

4.3.4 Conductive Medium

4.3.5 Problems with Viologen Compound

4.3.5.1 Dimerization

4.3.5.2 Aggregation and Solubility

4.3.5.3 Response Time

4.3.5.4 Driving Voltage

4.3.5.5 Conclusion

4.3.6 Examples of Viologen‐Based ECD

4.4 Companies Operating in the Field of Viologen Electrochromism. 4.4.1 Gentex

4.4.2 Essilor

4.4.3 Haoruo

4.5 Conclusion

References

5 Metallohexacyanates. 5.1 Background

5.2 Technology Development of PB

5.3 Crystal Structure

5.4 Electrochromic Mechanism

5.5 Synthesis

5.6 Electrochromic Devices (ECDs)

5.7 Nanocomposites

5.8 PB Analogs

5.9 Multifunctional Applications

References

6 Electrochromic Conjugated Polymers (ECPs) 6.1 Introduction

6.1.1 Common Categories and Operation Mechanism

6.1.2 Synthetic Methods

6.2 Thiophene‐Based Conjugated Electrochromic Polymers. 6.2.1 Introduction

6.2.2 Color‐Tuning Strategies for Thiophene‐Based Polymers

6.2.2.1 Steric Effects

6.2.2.2 Substituent and Electronic Effects

6.2.3 Typical Colored Polymers

6.2.3.1 Yellow and Orange

6.2.3.2 Red

6.2.3.3 Magenta and Purple

6.2.3.4 Black

6.2.3.5 Multicolored

6.2.3.6 Anodically Coloring Polymers

6.2.4 Water‐ or “Green Solvents”‐Soluble ECPs

6.3 Polypyrroles‐Based Conjugated Electrochromic Polymers. 6.3.1 Introduction

6.3.2 Electrochromic Properties of Polypyrroles (PPy)

6.3.3 Tuning of Electrochromic Properties of Polypyrrole (PPy)

6.3.3.1 Structural Modification. N‐Substituted Polypyrroles

6.3.3.2 3‐ and 3,4‐Substituted Polypyrroles

6.3.3.3 Donor–Acceptor Approach

6.3.3.4 Terarylene Systems

6.4 Polycarbazole‐Based Conjugated Electrochromic Polymers. 6.4.1 Introduction

6.4.2 Electrochromic Properties of Polycarbazoles (PCARB)

6.4.3 Electrochromic Properties of Polycarbazoles Derivatives

6.4.3.1 Linear Polycarbazole Derivatives

6.4.3.2 Cross‐Linked Polycarbazoles Derivatives

References

7 TA‐Based Electrochromic Polyimides and Polyamides. 7.1 Introduction. 7.1.1 Aromatic Polyimides and Polyamides

7.1.2 Triarylamine‐Based Aromatic Polymers

7.1.3 Electrochemical and Electrochromic Behaviors of MV Triarylamine Systems

7.2 Development of TA‐Based Electrochromic Polyimides and Polyamides

7.2.1 Side Group Engineering. 7.2.1.1 Introduction of Protecting Groups

7.2.1.2 Introduction of Electroactive Groups to Achieve Color Tuning of EC Material

7.2.1.3 Introduction of Side Groups to Achieve Electrofluorochromic Materials

7.2.1.4 Introduction of Other Functional Side Groups to Achieve Multiple Functions EC Material

7.2.2 Backbone Modulation. 7.2.2.1 Extending the Polymer Backbone by Introducing More Electroactive Groups

7.2.2.2 Introduction of Amide Linkage into Polyimide Backbone

7.2.2.3 Introduction of Ether Linkage into PIs/PAs Backbone

7.2.2.4 Introduction of Alicyclic Structures into PIs/PAs Backbone

7.3 Conclusions

References

8 Metallo‐Supermolecular Polymers. 8.1 Introduction

8.2 Single Metallic System. 8.2.1 Fe(II)‐ and Ru(II)‐Based Metallo‐Supramolecular Polymers

8.2.2 CoII‐Based Metallo‐Supramolecular Polymers

8.2.3 ZnII‐Based Metallo‐Supramolecular Polymers

8.2.4 Cu‐Based Metallo‐Supramolecular Polymers

8.2.5 EuIII‐Based Metallo‐Supramolecular Polymers

8.3 Hetero‐Metallic System

8.4 The Fabrication Method of Metallopolymer Film. 8.4.1 Layer‐by‐Layer Self‐Assembly and Dip‐Coating Methods

8.4.2 Electropolymerized Conducting Metallopolymers

8.5 Conclusion

References

9 Metal‐Organic Framework (MOF)‐ and Covalent Organic Framework (COF)‐Based Electrochromism (EC) 9.1 Introduction

9.2 Current Studies in EC MOFs

9.2.1 The Organic Linkers in EC MOFs. 9.2.1.1 NDI‐Based Organic Linkers

9.2.1.2 Other Organic Linkers

9.2.2 The Transport of Electrolyte Ions in EC MOFs

9.2.3 Special EC MOFs. 9.2.3.1 Photochromic and Electrochromic Multi‐Responsive MOF

9.2.3.2 MOF‐Based Double‐Sided EC Device and Other Color‐Switching Mechanisms

9.2.3.3 EC Base on “Guest@MOF” Composite System

9.3 Current Studies in EC COFs

9.4 Conclusion and Prospect

References

10 Nanostructure‐Based Electrochromism. 10.1 Introduction

10.2 Current Studies of Nanostructure in Electrochromism

10.2.1 Non‐Electrochromic Active Materials as a Template for ECs. 10.2.1.1 Photonic Crystals as Templates for ECs

10.2.1.2 Plasmonic Structures as Templates for ECs

10.2.2 Nanostructured Electrochromic Materials in ECs

10.3 Conclusion and Prospect

References

11 Organic Electroluminochromic Materials. 11.1 Introduction

11.2 Conventional Mechanisms of Electroluminochromism

11.2.1 Intrinsic Mechanism

11.2.2 Electron Transfer (ET) Mechanism

11.2.3 Energy Transfer (EnT) Mechanism

11.3 Electroluminochromic Performance Parameters

11.3.1 Emission Contrast

11.3.2 Switching Time

11.3.3 Long‐Term Stability/Cycle Life

11.4 Classical Materials

11.4.1 Small Molecules. 11.4.1.1 Small Molecular Dyads

11.4.1.2 Redox‐Active Moiety and Luminophores System

11.4.1.3 Electroactive Luminophores

11.4.2 Transition Metal Complexes

11.4.3 Polymers

11.4.3.1 Non‐Conjugated Polymers

Poly(amides)

Poly(imides)

11.4.3.2 Conjugated Polymers

Triphenylamine‐based ELC‐conjugated polymers

Fluorene‐based ELC‐conjugated polymers

ProDOT‐based ELC‐conjugated polymers

Carbazole‐based ELC‐conjugated polymers (Figure 11.25)

11.4.4 Nanocomposite Films

11.5 Future Perspectives and Conclusion

References

12 Organic Photoelectrochromic Devices. 12.1 Introduction

12.2 Structure Design of PECDs

12.2.1 Power Supply for PECD

12.2.1.1 DSSC‐Based PECD

Separated‐type PECD

Combined‐type PECD

Partly covered‐type PECD

Other PECD

12.2.1.2 PSC‐Based PECD

12.2.1.3 OPV‐Based PECD

12.2.2 Electrochromic Materials in PECD

12.2.2.1 Small Molecule

12.2.2.2 Conducting Polymers. Poly(thiophene)s

Polyaniline (PANI)

Poly(pyrrole)s (Ppys)

12.2.2.3 Near‐Infrared (NIR) Electrochromic Materials

12.2.3 Electrolytes in PECD

12.2.4 Substrates in PECD

12.3 Future Perspectives and Conclusion

References

13 Application of OEC Devices

13.1 Smart Window

13.1.1 The Structure and Working Mechanism of Smart Windows

13.1.2 The Materials for Electrochromic Windows

13.1.3 Prospects

13.2 Dimmable Rearview Mirror

13.3 Sensors. 13.3.1 Application of Electrochromic Sensors on Food Preservation

13.3.2 Application in Bio‐Sensing

13.4 The Application of Electrochromic Device in Display

13.5 Other Applications of OEC

References

14 Commercialized OEC Materials and Related Analysis of Company Patents. 14.1 General Introduction

14.2 Gentex Corporation

14.3 Ricoh Company, Ltd

14.4 Canon Inc

14.5 BOE Technology Group Co., Ltd. and OPPO Guangdong Mobile Communications Co., Ltd

14.6 Other Important Enterprises

14.6.1 Ninbo Ninuo Electronic Technology Co., Ltd

14.6.2 Ambilight Inc

14.6.3 Furcifer Inc

14.6.4 Changzhou Spectrum New Material Co. Ltd

14.7 Conclusion

References

15 Main Challenges for the Commercialization of OEC. 15.1 Introduction

15.2 The Long‐Term Stability of OEC Materials

15.3 The Mechanical Stability of OEC Devices (Encapsulation Technology)

15.4 Large‐Area Process Technology: Spray Coating and Roll‐to‐Roll Processes

15.4.1 Inkjet Printing

15.4.2 Spray Coating

15.4.3 Slot‐Die Coating

15.4.4 Screen Printing

15.5 Conclusions and Perspective

References

Index. a

b

c

d

e

f

g

h

i

l

m

n

o

p

q

r

s

t

u

v

w

x

z

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Hong Meng

This book covers major topics related to the phenomenon of electrochromism, including the history of organic electrochromism, fundamental principles, different types of electrochromic materials, development of device structures, multifunctional devices, their characterizations and applications, and future prospects of OEC technology. It also spotlights recent research progress reported by academic institutes and enterprises, and discusses the existing challenges in further development of this area.

.....

Differing from liquid and gel electrolytes, salt in solid‐like PEs is dissolved directly into the solid medium. It is usually a relatively high dielectric constant polymer (PEO, PMMA, PAN, polyphosphazenes, siloxanes, etc.) and a salt with low lattice energy.

Multiple advantages of using solid PEs in electrochemical cells are as follows:

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Organic Electronics for Electrochromic Materials and Devices
Подняться наверх