Step-by-Step Design of Large-Scale Photovoltaic Power Plants
Реклама. ООО «ЛитРес», ИНН: 7719571260.
Оглавление
Houshang Karimi. Step-by-Step Design of Large-Scale Photovoltaic Power Plants
Table of Contents
List of Tables
List of Illustrations
Guide
Pages
Step‐by‐Step Design of Large‐Scale Photovoltaic Power Plants
Preface
Acknowledgment
Acronyms
Symbols
1 Introduction. 1.1 Solar Energy
1.2 Diverse Solar Energy Applications
1.2.1 Solar Thermal Power Plant
1.2.2 PV Thermal Hybrid Power Plant
1.2.3 PV Power Plant
1.3 Global PV Power Plants
1.4 Perspective of PV Power Plants
1.5 A Review on the Design of Large‐Scale PV Power Plant
1.6 Outline of the Book
References
2 Design Requirements. 2.1 Overview
2.2 Development Phases
2.2.1 Concept Development and Site Identification
2.2.2 Prefeasibility Study
2.2.3 Feasibility Study
2.2.4 Permitting, Financing and Contracts
2.2.5 Detailed Design and Engineering
2.2.6 Construction
2.2.7 Commercial Operation
2.3 Project Predesign
2.4 Project Detailed Design
2.5 The Main Components Required for Realizing an LS‐PVPP
2.5.1 PV Panels (PV Module)
2.5.2 Solar Inverter
2.5.3 Photovoltaic Mounting Systems (Solar Module Racking)
2.5.4 DC Cable
2.5.5 DC Combiner Box
2.5.6 DC Protection System
2.5.7 AC Combiner Box
2.5.8 Low‐Voltage Switchgear
2.5.9 Transformers
2.5.10 Medium‐Voltage Switchgear
2.5.11 LV and MV AC Cables
2.5.12 AC Protection Devices
2.6 An Overview of PV Technologies
2.6.1 Background on Solar Cell
2.6.2 Types and Classifications
2.7 Solar Inverter Topologies Overview
2.7.1 Central Inverter
2.7.2 String Inverter
2.7.3 Multi‐string Inverter
2.7.4 Micro‐Inverter
2.8 Solar Panel Mounting
2.9 Solar Panel Tilt
2.10 Solar Tracking System
2.10.1 One‐Axis Tracker
2.10.1.1 North–South Horizontal‐Axis Tracking
2.10.1.2 Polar Tracking
2.10.1.3 East–West Horizontal‐Axis Tracking
2.10.1.4 Azimuthal‐Axis Tracking
2.10.2 Two‐Axis Tracker
2.10.3 Driving Motor
2.10.4 Solar Tracker Control
References
3 Feasibility Studies. 3.1 Introduction
3.2 Preliminary Feasibility Studies
3.3 Technical Feasibility Study
3.3.1 Site Selection
3.3.1.1 Amount of Sunlight
3.3.1.2 Land Area and Geometry
3.3.1.3 Climate Conditions
3.3.1.4 Site Access to Power Grid
3.3.1.5 Site Road Access
3.3.1.6 Site Topography
3.3.1.7 Land Geotechnics and Seismicity
3.3.1.8 Drainage, Seasonal Flooding
3.3.1.9 Land Use and Legal Permits
3.3.1.10 Air Pollution and Suspended Solid Particles
3.3.1.11 Geopolitical Risk
3.3.1.12 Financial Incentives
3.3.2 Annual Electricity Production
3.3.3 Equipment Technical Specifications
3.3.4 Execution and Construction Processes
3.3.5 Site Plan
3.4 Environmental Feasibility
3.5 Social Feasibility
3.6 Economic Feasibility
3.6.1 Financial Model Inputs
3.6.2 Financial Model Results
3.6.3 Financial and Economic Indicators
3.6.4 Financial Indicators
3.6.4.1 Net Present Value
3.6.4.2 Internal Rate of Return
3.6.4.3 Investment Return Period
3.6.4.4 Break Even Point
3.7 Timing Feasibility
3.8 Summary
References
4 Grid Connection Studies. 4.1 Introduction
4.2 Introducing Topics of Grid Connection Studies
4.2.1 Load Flow Studies
4.2.2 Contingency (N‐1)
4.2.3 Three‐phase and Single‐phase Short Circuit Studies
4.2.4 Grounding System Studies
4.2.5 Network Protection Studies
4.2.6 Power Quality Studies
4.2.7 Stability Studies
4.3 Modeling of Grid and PV Power Plants
4.3.1 Background Information Required for Modeling
4.3.2 Simulation of PV Plant and Network
4.3.3 Load Flow Studies Before and After PV Plant Connection
4.3.4 Contingency (N‐1) Studies Before and After PV Plant Connection
4.3.5 Three‐phase Short Circuit Studies
4.3.6 Power Quality Studies
4.3.7 Sustainability Studies
4.3.8 Investigating Additional Parameters for Grid Connection Studies
4.4 Summary
References
Note
5 Solar Resource and Irradiance. 5.1 Introduction
5.2 Radiometric Terms
5.2.1 Extraterrestrial Irradiance
5.2.2 Solar Geometry
5.2.3 Solar Radiation and Earth's Atmosphere
5.3 Solar Resources
5.3.1 Satellite Solar Data
5.3.2 Radiation Measurement
5.4 Solar Energy Radiation on Panels
5.5 Solar Azimuth and Altitude Angle
5.6 Tilt Angle and Orientation
5.7 Shadow Distances and Row Spacing
5.7.1 Sun Path
5.7.2 Shadow Calculations for Fixed PV Systems
5.7.3 Shadow Calculations for Single‐Axis Tracking PV Systems (Horizontal E–W Tracking Axis)
References
6 Large‐Scale PV Plant Design Overview. 6.1 Introduction
6.2 Classification of LS‐PVPP Engineering Documents
6.2.1 Part 1: Feasibility Study
6.2.2 Part 2: Basic Design
6.2.3 Part 3: Detailed Design and Shop Drawing
6.2.4 Part 4: As‐Built and Final Documentation
6.3 Roadmap Proposal for LS‐PVPP Design
6.3.1 Project Definition
6.3.2 Collecting General Information
6.3.3 Collecting Information By Site Visit
6.3.4 Limitations and Obstacles Identification
6.3.5 PV Module and Inverter Selection
6.3.6 String Size Calculations
6.3.7 Solar PV Mounting Structure Selection
6.3.8 Tilt Angle Calculation
6.3.9 Calculations of Far and Near Shading
6.3.10 Optimization Process
6.3.11 Energy Balance and Value Engineering
6.3.12 Optimal Transformer Size
6.3.13 General SLD and Layout
6.3.14 Detailed Design
6.3.15 Electrical Parameters and Value Engineering
6.3.16 Preparing Final Documents
6.4 Conclusion
References
7 PV Power Plant DC Side Design. 7.1 Introduction
7.2 DC Side Design Methodology
7.3 PV Modules Selection. 7.3.1 Module Technology
7.3.2 PV Module Size
7.3.3 Selection Criteria
7.4 Inverter Selection
7.4.1 Inverter Topologies
7.4.1.1 Micro Inverter
7.4.1.2 Multi‐string Inverter
7.4.1.3 String Inverter
7.4.1.4 Central Inverter
7.4.1.5 Virtual Central Inverter
7.4.2 Comparison of Inverter Topologies
7.5 PV Modules Number
7.5.1 Method 1. 7.5.1.1 Minimum String Size
7.5.1.2 Maximum String Size
7.5.1.3 Determining Maximum Current of a PV Module
7.5.1.4 Determining Number of Inverters
7.5.2 Method 2
7.6 Size of PV Plant DC Side
7.7 DC Cables. 7.7.1 Criteria
7.7.2 DC Cables Cross Section
7.7.2.1 Current Capacity
7.7.2.2 Voltage Drop
7.7.2.3 Power Loss
7.7.2.4 Short‐circuit Current
7.8 DC Combiner Box
7.9 String Diode
7.10 Fuse
7.10.1 Rated Voltage
7.10.2 Rated Current
7.10.3 Fuse Testing
7.10.4 Melting Time
7.11 Surge Arrester
7.12 DC Switch
7.13 Conclusion
Note
References
8 PV System Losses and Energy Yield. 8.1 Introduction
8.2 PV System Losses
8.2.1 Sunlight Losses
8.2.1.1 Array Incidence Losses
8.2.1.2 Soiling Losses
8.2.1.3 Dust Losses
8.2.1.4 Snow Losses
8.2.2 Sunlight into DC Electricity Conversion. 8.2.2.1 Temperature‐Related Losses
8.2.2.2 Shading Losses
8.2.2.3 Low Irradiance
8.2.2.4 Module Quality
8.2.2.5 Light‐Induced Degradation
8.2.2.6 Potential‐Induced Degradation
8.2.2.7 Manufacturing Module Mismatch
8.2.2.8 Degradation
8.2.3 DC to AC Conversion Losses. 8.2.3.1 Inverter Losses
8.2.3.2 MPPT Losses
8.2.3.3 Tracking Curtailment
8.2.3.4 PV Plant DC Losses
8.2.4 PV Plant AC Losses. 8.2.4.1 AC Losses
8.2.4.2 Auxiliary Power Losses
8.2.4.3 Downtime and Unavailability
8.2.4.4 Grid Compliance Losses
8.3 Energy Yield Prediction
8.3.1 Irradiation on Modules
8.3.2 PV Plant Losses
8.3.3 Performance Modeling
8.3.4 Uncertainty in Energy Yield
8.3.5 Performance Ratio
8.3.6 Capacity Factor
8.4 Conclusion
References
Index. a
b
c
d
e
f
g
h
i
l
m
n
o
p
r
s
t
u
v
w
z
WILEY END USER LICENSE AGREEMENT
Отрывок из книги
Davood Naghaviha
Daneshmand Engineers Co.
.....
Figure 1.11 shows that the PV power plants can be categorized into four groups based on their output power: small‐scale, medium‐size, large‐scale, and very LS‐PVPPs [8]. The large‐scale PV plants are known as solar farms and the very large‐scale PV plants are commonly known as solar parks. In addition to a distribution substation, the large‐scale and very‐large‐scale PV plants usually have one or more transmission or sub‐transmission substations.
In the last two decades, significant numbers of PV power plants have been installed worldwide. The cumulative installed capacity of PV plants by the end of 2020 has reached about 751 GW. There are few reasons for investing in solar plants. The most important ones are:
.....