Step-by-Step Design of Large-Scale Photovoltaic Power Plants

Step-by-Step Design of Large-Scale Photovoltaic Power Plants
Автор книги: id книги: 2263873     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 13035,6 руб.     (128,2$) Читать книгу Купить и скачать книгу Электронная книга Жанр: Физика Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119736585 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

How to design a solar power plant, from start to finish In Step-by-Step Design of Large-Scale Photovoltaic Power Plants, a team of distinguished engineers delivers a comprehensive reference on PV power plants—and their design—for specialists, experts, and academics. Written in three parts, the book covers the detailed theoretical knowledge required to properly design a PV power plant. It goes on to explore the step-by-step requirements for creating a real-world PV power plant, including parts and components design, mathematical formulations and calculations, analyses, evaluations, and planning. The book concludes with a discussion of a sample solar plant design, as well as tips on how to avoid common design mistakes, and how to handle the operation and maintenance of PV power plants. Step-by-Step Design of Large-Scale Photovoltaic Power Plants also includes: Thorough introductions to the basic requirements of design, economic analyses, and investment revenue Comprehensive explorations of the requirements for feasibility study and grid connection study Introducing solar resource, and determining optimum tilt angle and module inter-row spacing Presenting methodology for design of large-scale PV plant, requirements of engineering document, and optimal design algorithm In-depth examinations for selecting PV module, inverter, string, and DC side equipment Practical discussions of system losses, as well as estimation of yearly electrical energy production, capacity factor, and performance ratio of large-scale PV plant Perfect for professionals in the solar power industry, Step-by-Step Design of Large-Scale Photovoltaic Power Plants will also earn a place in the libraries of equipment manufacturers and university professors seeking a one-stop resource for the design of PV power plants.

Оглавление

Houshang Karimi. Step-by-Step Design of Large-Scale Photovoltaic Power Plants

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Step‐by‐Step Design of Large‐Scale Photovoltaic Power Plants

Preface

Acknowledgment

Acronyms

Symbols

1 Introduction. 1.1 Solar Energy

1.2 Diverse Solar Energy Applications

1.2.1 Solar Thermal Power Plant

1.2.2 PV Thermal Hybrid Power Plant

1.2.3 PV Power Plant

1.3 Global PV Power Plants

1.4 Perspective of PV Power Plants

1.5 A Review on the Design of Large‐Scale PV Power Plant

1.6 Outline of the Book

References

2 Design Requirements. 2.1 Overview

2.2 Development Phases

2.2.1 Concept Development and Site Identification

2.2.2 Prefeasibility Study

2.2.3 Feasibility Study

2.2.4 Permitting, Financing and Contracts

2.2.5 Detailed Design and Engineering

2.2.6 Construction

2.2.7 Commercial Operation

2.3 Project Predesign

2.4 Project Detailed Design

2.5 The Main Components Required for Realizing an LS‐PVPP

2.5.1 PV Panels (PV Module)

2.5.2 Solar Inverter

2.5.3 Photovoltaic Mounting Systems (Solar Module Racking)

2.5.4 DC Cable

2.5.5 DC Combiner Box

2.5.6 DC Protection System

2.5.7 AC Combiner Box

2.5.8 Low‐Voltage Switchgear

2.5.9 Transformers

2.5.10 Medium‐Voltage Switchgear

2.5.11 LV and MV AC Cables

2.5.12 AC Protection Devices

2.6 An Overview of PV Technologies

2.6.1 Background on Solar Cell

2.6.2 Types and Classifications

2.7 Solar Inverter Topologies Overview

2.7.1 Central Inverter

2.7.2 String Inverter

2.7.3 Multi‐string Inverter

2.7.4 Micro‐Inverter

2.8 Solar Panel Mounting

2.9 Solar Panel Tilt

2.10 Solar Tracking System

2.10.1 One‐Axis Tracker

2.10.1.1 North–South Horizontal‐Axis Tracking

2.10.1.2 Polar Tracking

2.10.1.3 East–West Horizontal‐Axis Tracking

2.10.1.4 Azimuthal‐Axis Tracking

2.10.2 Two‐Axis Tracker

2.10.3 Driving Motor

2.10.4 Solar Tracker Control

References

3 Feasibility Studies. 3.1 Introduction

3.2 Preliminary Feasibility Studies

3.3 Technical Feasibility Study

3.3.1 Site Selection

3.3.1.1 Amount of Sunlight

3.3.1.2 Land Area and Geometry

3.3.1.3 Climate Conditions

3.3.1.4 Site Access to Power Grid

3.3.1.5 Site Road Access

3.3.1.6 Site Topography

3.3.1.7 Land Geotechnics and Seismicity

3.3.1.8 Drainage, Seasonal Flooding

3.3.1.9 Land Use and Legal Permits

3.3.1.10 Air Pollution and Suspended Solid Particles

3.3.1.11 Geopolitical Risk

3.3.1.12 Financial Incentives

3.3.2 Annual Electricity Production

3.3.3 Equipment Technical Specifications

3.3.4 Execution and Construction Processes

3.3.5 Site Plan

3.4 Environmental Feasibility

3.5 Social Feasibility

3.6 Economic Feasibility

3.6.1 Financial Model Inputs

3.6.2 Financial Model Results

3.6.3 Financial and Economic Indicators

3.6.4 Financial Indicators

3.6.4.1 Net Present Value

3.6.4.2 Internal Rate of Return

3.6.4.3 Investment Return Period

3.6.4.4 Break Even Point

3.7 Timing Feasibility

3.8 Summary

References

4 Grid Connection Studies. 4.1 Introduction

4.2 Introducing Topics of Grid Connection Studies

4.2.1 Load Flow Studies

4.2.2 Contingency (N‐1)

4.2.3 Three‐phase and Single‐phase Short Circuit Studies

4.2.4 Grounding System Studies

4.2.5 Network Protection Studies

4.2.6 Power Quality Studies

4.2.7 Stability Studies

4.3 Modeling of Grid and PV Power Plants

4.3.1 Background Information Required for Modeling

4.3.2 Simulation of PV Plant and Network

4.3.3 Load Flow Studies Before and After PV Plant Connection

4.3.4 Contingency (N‐1) Studies Before and After PV Plant Connection

4.3.5 Three‐phase Short Circuit Studies

4.3.6 Power Quality Studies

4.3.7 Sustainability Studies

4.3.8 Investigating Additional Parameters for Grid Connection Studies

4.4 Summary

References

Note

5 Solar Resource and Irradiance. 5.1 Introduction

5.2 Radiometric Terms

5.2.1 Extraterrestrial Irradiance

5.2.2 Solar Geometry

5.2.3 Solar Radiation and Earth's Atmosphere

5.3 Solar Resources

5.3.1 Satellite Solar Data

5.3.2 Radiation Measurement

5.4 Solar Energy Radiation on Panels

5.5 Solar Azimuth and Altitude Angle

5.6 Tilt Angle and Orientation

5.7 Shadow Distances and Row Spacing

5.7.1 Sun Path

5.7.2 Shadow Calculations for Fixed PV Systems

5.7.3 Shadow Calculations for Single‐Axis Tracking PV Systems (Horizontal E–W Tracking Axis)

References

6 Large‐Scale PV Plant Design Overview. 6.1 Introduction

6.2 Classification of LS‐PVPP Engineering Documents

6.2.1 Part 1: Feasibility Study

6.2.2 Part 2: Basic Design

6.2.3 Part 3: Detailed Design and Shop Drawing

6.2.4 Part 4: As‐Built and Final Documentation

6.3 Roadmap Proposal for LS‐PVPP Design

6.3.1 Project Definition

6.3.2 Collecting General Information

6.3.3 Collecting Information By Site Visit

6.3.4 Limitations and Obstacles Identification

6.3.5 PV Module and Inverter Selection

6.3.6 String Size Calculations

6.3.7 Solar PV Mounting Structure Selection

6.3.8 Tilt Angle Calculation

6.3.9 Calculations of Far and Near Shading

6.3.10 Optimization Process

6.3.11 Energy Balance and Value Engineering

6.3.12 Optimal Transformer Size

6.3.13 General SLD and Layout

6.3.14 Detailed Design

6.3.15 Electrical Parameters and Value Engineering

6.3.16 Preparing Final Documents

6.4 Conclusion

References

7 PV Power Plant DC Side Design. 7.1 Introduction

7.2 DC Side Design Methodology

7.3 PV Modules Selection. 7.3.1 Module Technology

7.3.2 PV Module Size

7.3.3 Selection Criteria

7.4 Inverter Selection

7.4.1 Inverter Topologies

7.4.1.1 Micro Inverter

7.4.1.2 Multi‐string Inverter

7.4.1.3 String Inverter

7.4.1.4 Central Inverter

7.4.1.5 Virtual Central Inverter

7.4.2 Comparison of Inverter Topologies

7.5 PV Modules Number

7.5.1 Method 1. 7.5.1.1 Minimum String Size

7.5.1.2 Maximum String Size

7.5.1.3 Determining Maximum Current of a PV Module

7.5.1.4 Determining Number of Inverters

7.5.2 Method 2

7.6 Size of PV Plant DC Side

7.7 DC Cables. 7.7.1 Criteria

7.7.2 DC Cables Cross Section

7.7.2.1 Current Capacity

7.7.2.2 Voltage Drop

7.7.2.3 Power Loss

7.7.2.4 Short‐circuit Current

7.8 DC Combiner Box

7.9 String Diode

7.10 Fuse

7.10.1 Rated Voltage

7.10.2 Rated Current

7.10.3 Fuse Testing

7.10.4 Melting Time

7.11 Surge Arrester

7.12 DC Switch

7.13 Conclusion

Note

References

8 PV System Losses and Energy Yield. 8.1 Introduction

8.2 PV System Losses

8.2.1 Sunlight Losses

8.2.1.1 Array Incidence Losses

8.2.1.2 Soiling Losses

8.2.1.3 Dust Losses

8.2.1.4 Snow Losses

8.2.2 Sunlight into DC Electricity Conversion. 8.2.2.1 Temperature‐Related Losses

8.2.2.2 Shading Losses

8.2.2.3 Low Irradiance

8.2.2.4 Module Quality

8.2.2.5 Light‐Induced Degradation

8.2.2.6 Potential‐Induced Degradation

8.2.2.7 Manufacturing Module Mismatch

8.2.2.8 Degradation

8.2.3 DC to AC Conversion Losses. 8.2.3.1 Inverter Losses

8.2.3.2 MPPT Losses

8.2.3.3 Tracking Curtailment

8.2.3.4 PV Plant DC Losses

8.2.4 PV Plant AC Losses. 8.2.4.1 AC Losses

8.2.4.2 Auxiliary Power Losses

8.2.4.3 Downtime and Unavailability

8.2.4.4 Grid Compliance Losses

8.3 Energy Yield Prediction

8.3.1 Irradiation on Modules

8.3.2 PV Plant Losses

8.3.3 Performance Modeling

8.3.4 Uncertainty in Energy Yield

8.3.5 Performance Ratio

8.3.6 Capacity Factor

8.4 Conclusion

References

Index. a

b

c

d

e

f

g

h

i

l

m

n

o

p

r

s

t

u

v

w

z

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Davood Naghaviha

Daneshmand Engineers Co.

.....

Figure 1.11 shows that the PV power plants can be categorized into four groups based on their output power: small‐scale, medium‐size, large‐scale, and very LS‐PVPPs [8]. The large‐scale PV plants are known as solar farms and the very large‐scale PV plants are commonly known as solar parks. In addition to a distribution substation, the large‐scale and very‐large‐scale PV plants usually have one or more transmission or sub‐transmission substations.

In the last two decades, significant numbers of PV power plants have been installed worldwide. The cumulative installed capacity of PV plants by the end of 2020 has reached about 751 GW. There are few reasons for investing in solar plants. The most important ones are:

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Step-by-Step Design of Large-Scale Photovoltaic Power Plants
Подняться наверх