Applied Regression Modeling

Applied Regression Modeling
Автор книги: id книги: 2176394     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 12538,6 руб.     (122,24$) Читать книгу Купить и скачать книгу Электронная книга Жанр: Математика Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119615903 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Master the fundamentals of regression without learning calculus with this one-stop resource The newly and thoroughly revised 3rd Edition of Applied Regression Modeling delivers a concise but comprehensive treatment of the application of statistical regression analysis for those with little or no background in calculus. Accomplished instructor and author Dr. Iain Pardoe has reworked many of the more challenging topics, included learning outcomes and additional end-of-chapter exercises, and added coverage of several brand-new topics including multiple linear regression using matrices. The methods described in the text are clearly illustrated with multi-format datasets available on the book's supplementary website. In addition to a fulsome explanation of foundational regression techniques, the book introduces modeling extensions that illustrate advanced regression strategies, including model building, logistic regression, Poisson regression, discrete choice models, multilevel models, Bayesian modeling, and time series forecasting. Illustrations, graphs, and computer software output appear throughout the book to assist readers in understanding and retaining the more complex content. Applied Regression Modeling covers a wide variety of topics, like: Simple linear regression models, including the least squares criterion, how to evaluate model fit, and estimation/prediction Multiple linear regression, including testing regression parameters, checking model assumptions graphically, and testing model assumptions numerically Regression model building, including predictor and response variable transformations, qualitative predictors, and regression pitfalls Three fully described case studies, including one each on home prices, vehicle fuel efficiency, and pharmaceutical patches Perfect for students of any undergraduate statistics course in which regression analysis is a main focus, Applied Regression Modeling also belongs on the bookshelves of non-statistics graduate students, including MBAs, and for students of vocational, professional, and applied courses like data science and machine learning.

Оглавление

Iain Pardoe. Applied Regression Modeling

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Applied Regression Modeling

Copyright

Preface

Acknowledgments

INTRODUCTION. I.1 STATISTICS IN PRACTICE

I.2 Learning Statistics

About the Companion Website

Chapter 1 Foundations

1.1 Identifying and Summarizing Data

1.2 Population Distributions

1.3 Selecting Individuals at Random—Probability

1.4 Random Sampling

1.4.1 Central limit theorem—normal version

1.4.2 Central limit theorem—t‐version

1.5 Interval Estimation

1.6 Hypothesis Testing

1.6.1 The rejection region method

1.6.2 The p‐value method

1.6.3 Hypothesis test errors

1.7 Random Errors and Prediction

1.8 Chapter Summary

Problems

Chapter 2 Simple Linear Regression

2.1 PROBABILITY MODEL FOR and

2.2 Least Squares Criterion

2.3 Model Evaluation

2.3.1 Regression standard error

2.3.2 Coefficient of determination—

Correlation

2.3.3 Slope parameter

Slope hypothesis test

Slope confidence interval

2.4 Model Assumptions

2.4.1 Checking the model assumptions

2.4.2 Testing the model assumptions

2.5 Model Interpretation

2.6 Estimation and Prediction

2.6.1 Confidence interval for the population mean, E

2.6.2 Prediction interval for an individual ‐value

2.7 Chapter Summary

2.7.1 Review example

Problems

Chapter 3 Multiple Linear Regression

3.1 Probability Model for (X1, X2, …) and Y

3.2 Least Squares Criterion

Optional—formula for regression parameter estimates

3.3 Model Evaluation

3.3.1 Regression standard error

3.3.2 Coefficient of determination—

Adjusted

Multiple correlation

3.3.3 Regression parameters—global usefulness test

3.3.4 Regression parameters—nested model test

3.3.5 Regression parameters—individual tests

Regression parameter hypothesis tests

Regression parameter confidence intervals

Correlation revisited

Predictor selection

Optional—formula for regression parameter standard errors

3.4 Model Assumptions

3.4.1 Checking the model assumptions

3.4.2 Testing the model assumptions

3.5 Model Interpretation

3.6 Estimation and Prediction

3.6.1 Confidence interval for the population mean, E

3.6.2 Prediction interval for an individual ‐value

Optional—formulas for standard errors of estimation and prediction

3.7 Chapter Summary

Problems

Chapter 4 Regression Model Building I

4.1 Transformations

4.1.1 Natural logarithm transformation for predictors

4.1.2 Polynomial transformation for predictors

Optional—mathematical justification for preserving hierarchy when using polynomial transformations

4.1.3 Reciprocal transformation for predictors

4.1.4 Natural logarithm transformation for the response

4.1.5 Transformations for the response and predictors

Optional—regression parameter interpretations for transformed predictors

4.2 Interactions

4.3 Qualitative Predictors

4.3.1 Qualitative predictors with two levels

4.3.2 Qualitative predictors with three or more levels

Optional—testing equality of regression parameters with the nested model test

4.4 Chapter Summary

Problems

Chapter 5 Regression Model Building II

5.1 Influential Points

5.1.1 Outliers

Optional—formulas for standardized and studentized residuals

5.1.2 Leverage

Optional—formula for leverages

5.1.3 Cook's distance

Optional—formula for Cook's distances

5.2 Regression Pitfalls

5.2.1 Nonconstant variance

5.2.2 Autocorrelation

5.2.3 Multicollinearity

Optional—formula for variance inflation factors

5.2.4 Excluding important predictor variables

5.2.5 Overfitting

5.2.6 Extrapolation

5.2.7 Missing data

5.2.8 Power and sample size

5.3 Model Building Guidelines

5.4 Model Selection

5.5 Model Interpretation Using Graphics

5.6 Chapter Summary

Problems

Bibliography

Glossary

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Third Edition

Iain Pardoe Thompson Rivers University The Pennsylvania State University

.....

Under very general conditions, t has an approximate t‐distribution with degrees of freedom. The two differences from the normal version of the central limit theorem that we used before are that the repeated sample standard deviations, , replace an assumed population standard deviation, , and that the resulting sampling distribution is a t‐distribution (not a normal distribution).

To illustrate, let us repeat the calculations from Section 1.4.1 based on an assumed population mean, , but rather than using an assumed population standard deviation, , we will instead use our observed sample standard deviation, 53.8656 for . To find the 90th percentile of the sampling distribution of the mean sale price, :

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Applied Regression Modeling
Подняться наверх