Liquid Crystals

Liquid Crystals
Автор книги: id книги: 2325161     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 14289,4 руб.     (139,31$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Техническая литература Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119705796 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

The latest edition of the leading resource on the properties and applications of liquid crystals In the newly revised Third Edition of Liquid Crystals, Professor Iam Choon Khoo delivers a comprehensive treatment of the fundamentals and applied aspects of optical physics, light scattering, electro-optics, and non-linear optics of liquid crystals. The book's opening chapters include coverage of the foundational physics and optical properties of liquid crystals and lead to more advanced content on the display, photonics and nonlinear optics applications of liquid crystals. New topics, including photonic crystals, metamaterials, ultrafast nonlinear optics, and fabrication methods for massive cholesteric and blue phase liquid crystals are discussed at length. Analytical methods and experimental observations of nonlinear light propagation through liquid crystalline and anisotropic materials and devices are also discussed. Liquid Crystals offers an insightful and unique treatment of the nonlinear optics of liquid crystals. New and expanded sections round out this new edition and add to the most up-to-date resource on this topic available today. The book also includes: A thorough introduction to liquid crystals, including their molecular structures, chemical compositions, order parameter, phase transition, and free energies Practical discussions of nematic, cholesteric, smectic, and ferroelectric liquid crystals, and explorations of linear and nonlinear light scattering in these phases. A detailed quantum mechanical treatment of the linear and nonlinear electronic optical response of liquid crystal molecules to optical fields. A self-contained discussion of the fundamentals of nonlinear optics/photonics and comprehensive review of all liquid crystalline materials-based nonlinear optical processes and applications. The latest edition of Liquid Crystals is an indispensable resource for graduate students, professors, research scientists and engineers in industrial or government laboratories. It's also an ideal reference for anyone seeking a one-stop textbook with complete coverage of the optical, electro-optical, and non-linear optical properties and processes of liquid crystals.

Оглавление

Iam-Choon Khoo. Liquid Crystals

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Liquid Crystals

Preface

1 Introduction to Liquid Crystals

1.1. MOLECULAR STRUCTURES AND CHEMICAL COMPOSITIONS

1.2. OPTICAL PROPERTIES

1.2.1. Electronic Optical Transitions and UV Absorption

1.2.2. Visible and Infrared Absorption; Terahertz, Microwave

1.3. LYOTROPIC, POLYMERIC, AND THERMOTROPIC LIQUID CRYSTALS

1.3.1. Lyotropic Liquid Crystals

1.3.2. Polymeric Liquid Crystals

1.3.3. Thermotropic Liquid Crystals: Smectic, Nematic, Cholesteric, and Blue‐phase Liquid Crystals

1.3.4. Functionalized and Discotic Liquid Crystals

1.4. MIXTURES, POLYMER‐DISPERSED, AND DYE‐DOPED LIQUID CRYSTALS

1.4.1. Mixtures

1.4.2. Dye‐doped Liquid Crystals

1.4.3. Polymer‐dispersed and Polymer‐stabilized Liquid Crystals

1.5. LIQUID CRYSTAL CELLS FABRICATION

1.5.1. Nematic LC Cells Assembly

1.5.2. Cholesteric Liquid Crystal Cell Assembly

1.5.3. Blue‐phase Liquid Crystal Cell Assembly

1.5.4. Photosensitive and Tunable Optical Waveguide, Photonic Crystals, and Metamaterial Nanostructures

1.5.5. Isotropic Liquid Crystal Cored Fiber Array

REFERENCES

2 Order Parameter, Phase Transition, and Free Energies. 2.1. BASIC CONCEPTS. 2.1.1. Introduction

2.1.2. Scalar and Tensor Order Parameters

2.1.3. Long‐ and Short‐range Order

2.2. MOLECULAR INTERACTIONS AND PHASE TRANSITIONS

2.3. MOLECULAR THEORIES AND RESULTS FOR THE LIQUID CRYSTALLINE PHASE

2.3.1. Maier–Saupe Theory: Order Parameter Near Tc

2.3.2. Nonequilibrium and Dynamical Dependence of the Order Parameter

2.4. ISOTROPIC PHASE OF LIQUID CRYSTALS

2.4.1. Free Energy and Phase Transition

2.4.2. Free Energy in the Presence of an Applied Field

REFERENCES

3 Nematic Liquid Crystals. 3.1. INTRODUCTION

3.2. ELASTIC CONTINUUM THEORY. 3.2.1. The Vector Field: Director Axis

3.2.2. Elastic Constants, Free Energies, and Molecular Fields

3.3. DIELECTRIC CONSTANTS AND REFRACTIVE INDICES

3.3.1. DC and Low‐frequency Dielectric Permittivity, Conductivities, and Magnetic Susceptibility

3.3.2. Free Energy and Torques by Electric and Magnetic Fields

3.4. OPTICAL DIELECTRIC CONSTANTS AND REFRACTIVE INDICES. 3.4.1. Linear Susceptibility and Local Field Effect

3.4.2. Equilibrium Temperature and Order Parameter Dependences of Refractive Indices

3.5. FLOWS AND HYDRODYNAMICS

3.5.1. Hydrodynamics of Ordinary Isotropic Fluids

3.5.2. General Stress Tensor for Nematic Liquid Crystals

3.5.3. Flows with Fixed Director Axis Orientation

3.5.4. Flows with Director Axis Reorientation

3.6. FIELD‐INDUCED DIRECTOR AXIS REORIENTATION EFFECTS

3.6.1. Field‐induced Reorientation Without Flow Coupling: Freedericksz Transition

3.6.2. Reorientation with Flow Coupling

REFERENCES

4 Cholesteric, Smectic, and Ferroelectric Liquid Crystals. 4.1. CHOLESTERIC LIQUID CRYSTALS

4.1.1. Free Energies

4.1.2. Field‐induced Effects and Dynamics

4.1.2.1. Magnetic Field

4.1.2.2. Electric Field

4.1.3. Twist and Conic Mode Relaxation Times

4.2. OPTICAL PROPERTIES OF CHOLESTERICS

4.2.1. Bragg Regime (Optical Wavelength ~ Pitch)

4.2.2. Reflection and Transmission of Polarized Light: Normal Incidence

4.2.3. Cholesteric Liquid Crystal as a One‐dimensional Photonic Crystal, Photonic Bandgap, and Dispersion

4.2.4. Cholesteric Liquid Crystals with Magneto‐optic Activity: Negative Index of Refraction

4.2.5. Polarization Rotation and Switching by High Period Number CLC – Adiabatic Rotation and Circular Bragg Resonance

4.3. CHOLESTERIC BLUE PHASE LIQUID CRYSTALS. 4.3.1. Free Energies and Equation of Motion under an Applied Field

4.3.2. Field‐induced Lattice Distortion and New Crystalline Structures

4.3.3. Polymer‐stabilization and Electro‐optical Properties of Non‐cubic BPLC

4.4. SMECTIC AND FERROELECTRIC LIQUID CRYSTALS: A BRIEF SURVEY

4.4.1. Smectic‐A Liquid Crystals. 4.4.1.1. Free Energies

4.4.1.2. Light Scattering in SmA Liquid Crystals

4.4.2. Smectic‐C Liquid Crystals. 4.4.2.1. Free Energy

4.4.2.2. Field‐induced Director Axis Rotation in SmC Liquid Crystals

4.4.3. Smectic‐C* and Ferroelectric Liquid Crystals

4.4.3.1. Free Energy of Ferroelectric Liquid Crystals

4.4.4. Smectic‐C* – Smectic‐A Phase Transition

References

5 Light Scattering. 5.1. INTRODUCTION

5.2. ELECTROMAGNETIC FORMALISM OF LIGHT SCATTERING IN LIQUID CRYSTALS

5.3. SCATTERING FROM DIRECTOR AXIS FLUCTUATIONS IN NEMATIC LIQUID CRYSTALS

5.4. LIGHT SCATTERING IN THE ISOTROPIC PHASE OF LIQUID CRYSTALS

5.5. TEMPERATURE, WAVELENGTH, AND CELL GEOMETRY EFFECTS ON SCATTERING

5.6. SPECTRUM OF LIGHT AND ORIENTATION FLUCTUATION DYNAMICS

5.7. RAMAN SCATTERINGS. 5.7.1. Introduction

5.7.2. Quantum Theory of Spontaneous and Stimulated Raman Scattering: Scattering Cross‐section

5.7.3. Spontaneous Raman Scattering

5.7.4. Stimulated Raman Scattering

5.8. BRILLOUIN AND RAYLEIGH SCATTERINGS

5.8.1. Brillouin Scattering

5.8.2. Rayleigh Scattering

5.9. A BRIEF INTRODUCTION TO NONLINEAR LIGHT SCATTERING

REFERENCES

6 Liquid Crystals Optics and Electro‐optics. 6.1. INTRODUCTION

6.2. REVIEW OF ELECTRO‐OPTICS OF ANISOTROPIC AND BIREFRINGENT CRYSTALS. 6.2.1. Anisotropic, Uniaxial and Biaxial Optical Crystals

6.2.2. Index Ellipsoid in the Presence of an Electric Field–Electro‐optics Effect

6.2.3. Polarizers and Retardation Plate

6.2.4. Basic Electro‐optics Modulation

6.3. ELECTRO‐OPTICS OF NEMATIC LIQUID CRYSTALS

6.3.1. Director Axis Reorientation in Homeotropic and Planar Cell; Dual Frequency Liquid Crystals

6.3.2. Freedericksz Transition Revisited

6.3.2.1. Case 1: One Elastic Constant Approximation

6.3.2.2. Case 2: Freedericksz Transition Voltage – Including Elastic Anisotropies

6.3.2.3. Case 3: Freedericksz Transition Voltage – Including Conductivity

6.3.3. Field‐induced Refractive Index Change and Phase Shift

6.4. NEMATIC LIQUID CRYSTAL SWITCHES FOR DISPLAY APPLICATION

6.4.1. Liquid Crystal Switch – on Axis Consideration for Twist, Planar, and Homeotropic Aligned Cells

6.4.2. Off‐axis Transmission, Viewing Angle, and Birefringence Compensation

6.4.3. Liquid Crystal Display Electronics

6.5. ELECTRO‐OPTICAL EFFECTS IN OTHER PHASES OF LIQUID CRYSTALS

6.5.1. Surface Stabilized FLC

6.5.2. Soft‐mode FLCs

6.6. NON‐DISPLAY APPLICATIONS OF LIQUID CRYSTALS

6.6.1. Liquid Crystal Spatial Light Modulator

6.6.2. Tunable Photonic Crystals with Liquid Crystal Infiltrated Nanostructures

6.6.3. Tunable Frequency Selective Structures, Metamaterial, and Metasurfaces

6.6.4. Liquid Crystals for Molecular Sensing and Detection

6.6.5. Beam Steering, Routing, and Tunable Micro‐ring Resonator, and High‐power Laser Optics

References

7 Optical Propagation in Anisotropic Materials. 7.1. ELECTROMAGNETIC FORMALISMS FOR OPTICAL PROPAGATION

7.1.1. Maxwell Equations and Wave Equations in Anisotropic Media

7.1.2. Complex Refractive Index – Real and Imaginary Components

7.1.3. Negative Index Material

7.1.4. Normal Modes, Power Flow and Propagation Vectors in a Lossless Isotropic Medium

7.1.5. Normal Modes and Propagation Vectors in a Lossless Anisotropic Medium

7.2. POLARIZED LIGHT PROPAGATION IN LIQUID CRYSTAL DISPLAY PANEL

7.2.1. Pane Polarized Wave and Jones Vectors

7.2.2. Jones Matrix Method

7.2.3. Oblique Incidence – 4 × 4 Matrix Methods

7.3. EXTENDED JONES MATRIX METHOD

7.4. FINITE‐DIFFERENCE TIME‐DOMAIN TECHNIQUE

7.5. NONLINEAR LIGHT PROPAGATION IN LIQUID CRYSTALS – A FIRST LOOK

7.6. SYSTEMS OF UNITS

References

8 Laser‐induced Reorientation Nonlinear Optical Effects. 8.1. INTRODUCTION

8.2. LASER‐INDUCED MOLECULAR REORIENTATIONS IN THE ISOTROPIC PHASE. 8.2.1. Individual Molecular Reorientations in Anisotropic Liquids

8.2.2. Correlated Molecular Reorientation Dynamics

8.2.3. Influence of Molecular Structure on Isotropic Phase Reorientation Nonlinearities

8.3. MOLECULAR REORIENTATIONS IN THE NEMATIC PHASE

8.3.1. Simplified Treatment of Optical Field‐induced Director Axis Reorientation

8.3.2. More Exact Treatment of Optical Field‐induced Director Axis Reorientation

8.3.3. Nonlocal Director Axis Reorientation and Nonlocal Optical Nonlinearity

8.4. NEMATIC PHASE REORIENTATION DYNAMICS

8.4.1. Plane Wave Optical Field

8.4.2. Sinusoidal Optical Intensity

8.4.3. Polarization Grating with Uniform Optical Intensity

8.5. LASER‐INDUCED DIRECTOR AXIS REALIGNMENT IN DYE‐DOPED LIQUID CRYSTALS

8.5.1. Reorientation Caused by Inter‐Molecular Torque

8.5.2. Laser‐induced Trans–Cis Isomerism in Dye‐doped Liquid Crystals

8.6. DC FIELD AIDED OPTICALLY INDUCED NONLINEAR OPTICAL EFFECTS IN LIQUID CRYSTALS – PHOTOREFRACTIVITY

8.6.1. Orientation Photorefractivity – Bulk Effects

8.6.2. Experimental Results and Surface Charge/Field Contribution

8.7. REORIENTATION IN OTHER PHASES OF PRISTINE (UNDOPED) LIQUID CRYSTALS

8.7.1. Smectic Phase

8.7.2. Cholesteric and Blue‐phase Liquid Crystals

REFERENCES

9 Thermal, Density, Lattice Distortion Optical Nonlinearities in Nematic, Cholesteric, and Blue‐phase Liquid Crystals. 9.1. INTRODUCTION

9.2. ELECTROSTRICTION AND FLOWS IN NON‐ABSORBING LIQUID CRYSTALS – A GENERAL OVERVIEW

9.3. LASER‐INDUCED DENSITY AND TEMPERATURE MODULATIONS IN LIQUID CRYSTALS

9.3.1. Modulations by Sinusoidal Optical Intensity

9.3.2. Refractive Index Changes: Temperature and Density Effects

9.4. OPTICAL NONLINEARITIES OF NEMATIC LIQUID CRYSTALS

9.4.1. Steady‐State Thermal Nonlinearity of Nematic Liquid Crystals

9.4.2. Short Laser Pulse‐induced Thermal Index Change in Nematics and Near‐Tc Effect

9.4.3. Optical Nonlinearities of Isotropic Liquid Crystals

9.5. COUPLED NONLINEAR OPTICAL EFFECTS IN NEMATIC LIQUID CRYSTALS

9.5.1. Thermal Orientation Coupling Effect

9.5.2. Flow‐reorientation Effect

9.6. NONLINEAR OPTICAL RESPONSES OF CHOLESTERIC BLUE‐PHASE LIQUID CRYSTALS. 9.6.1. General Overview

9.6.2. Non‐electronics Optical Nonlinearities of BPLC

REFERENCES

10 Electronic Optical Nonlinearities. 10.1. INTRODUCTION TO QUANTUM MECHANICAL TREATMENT OF MOLECULES

10.2. DENSITY MATRIX FORMALISM FOR OPTICAL INDUCED MOLECULAR ELECTRONIC POLARIZABILITIES

10.2.1. Field‐induced Polarizations – First and Higher Orders

10.2.2. Linear and Nonlinear Absorptions

10.3. LINEAR AND NONLINEAR ELECTRONIC SUSCEPTIBILITIES. 10.3.1. Linear Optical Polarizabilities of a Molecule

10.3.2. Complex Susceptibilities and Index of Refraction – Dispersion, Absorption, and Amplification of Light, Lasers

10.3.3. Second‐order Electronic Polarizabilities

10.3.4. Third‐order Electronic Polarizabilities

10.3.5. Local Field Effects and Symmetry

10.3.6. Symmetry Considerations

10.3.7. Permanent Dipole and Molecular Ordering

10.3.8. Quadrupole Contribution and Field‐induced Symmetry Breaking

10.3.9. Influence of Molecular Structures

10.4. INTENSITY‐DEPENDENT REFRACTIVE INDEX CHANGE AND NONLINEAR ABSORPTION

10.4.1. Nonlinear Absorption

REFERENCES

11 Nonlinear Optics. 11.1. INTRODUCTION

11.1.1. General Nonlinear Polarization and Susceptibility

11.1.2. Convention and Symmetry

11.2. COUPLED MAXWELL WAVE EQUATIONS

11.3. NONLINEAR OPTICAL PHENOMENA

11.3.1. Stationary Degenerate Optical Wave Mixing

11.3.2. Optical Phase Conjugation

11.3.3. Transient and Nearly Degenerate Wave Mixing

11.3.4. Nondegenerate Optical Wave Mixing; Harmonic Generations

11.3.5. Stationary Self‐phase Modulation and Self‐action

11.4. STIMULATED SCATTERINGS

11.4.1. Stimulated Raman Scatterings

11.4.2. Stimulated Brillouin Scatterings

11.4.3. Stimulated Orientation Scattering in Liquid Crystals

11.4.3.1. Steady‐state Small Signal Regime

11.4.3.2. Steady‐state Pump‐depletion Limit

11.4.4. Stimulated Thermal Scattering

11.5. ULTRAFAST LASER PULSE SELF‐ACTION EFFECTS IN CHOLESTERIC LIQUID CRYSTALS

11.5.1. Coupled Wave Equations for Forward and Backward Propagating Waves

11.5.2. Ultrafast Pulse Modulations – Compression, Stretching, and Recompression with Cholesteric Liquid Crystals

REFERENCES

12 Nonlinear Optical Processes Observed in Liquid Crystals

12.1. SELF‐ACTION NONLINEAR OPTICAL PROCESSES. 12.1.1. Self‐induced Spatial and Temporal Phase Shift

12.1.2. Self‐phase Modulation, Self‐focusing, ‐defocusing of Continuous‐Wave (CW) or Pulsed Laser

12.1.3. Self‐guiding, Spatial Soliton and Pattern Formation

12.1.4. Pulse Modulations, Polarization Rotation of and Switching by Ultrafast (Picosecond–Femtoseconds) Laser

12.2. OPTICAL WAVE MIXINGS

12.2.1. Stimulated Orientational Scattering and Polarization Self‐switching–Steady State

12.2.2. Stimulated Orientational Scattering – Nonlinear Dynamics

12.2.3. Optical Phase Conjugation with Orientation and Thermal Gratings

12.2.4. Self‐starting Optical Phase Conjugation

12.3. LIQUID CRYSTALS FOR ALL‐OPTICAL IMAGE PROCESSING. 12.3.1. Liquid Crystals as All‐optical Information Processing Materials

12.3.2. All‐optical Image Processing

12.3.3. Intelligent Optical Processing

12.4. HARMONIC GENERATIONS AND SUM‐FREQUENCY SPECTROSCOPY

12.5. OPTICAL SWITCHING

12.6. NONLINEAR ABSORPTION AND OPTICAL LIMITING OF LASERS FOR EYE/SENSOR PROTECTION. 12.6.1. Introduction

12.6.2. Nonlinear Fiber Array – An Intensity Dependent Spatial Frequency Filter

12.6.3. Optical Limiting Action of Fiber Array Containing RSA Materials

12.6.4. Optical Limiting Action of Fiber Array Containing TPA Materials

References

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Third Edition

.....

(3.48)

(3.49)

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Liquid Crystals
Подняться наверх