Nuclear Physics 1
Реклама. ООО «ЛитРес», ИНН: 7719571260.
Оглавление
Ibrahima Sakho. Nuclear Physics 1
Table of Contents
Guide
List of Illustrations
List of Tables
Pages
Nuclear Physics 1. Nuclear Deexcitations, Spontaneous Nuclear Reactions
Preface
1. Overview of the Nucleus
1.1. Discovery of the electron. 1.1.1. Hittorf and Crookes experiments
Box 1.1. Hittorf (1824–1914); Crookes (1832–1919)
1.1.2. Perrin and Thomson experiments
Box 1.2. Stoney (1826–1911); Thomson (1856–1940); Perrin (1870–1942)
1.1.3. Millikan experiment
Box 1.3. Millikan (1868–1953)
1.2. The birth of the nucleus. 1.2.1. Perrin and Thomson atomic model
1.2.2. Geiger and Marsden experiment
Box 1.4. Geiger (1882–1945); Marsden (1889–1970)
1.2.3. Rutherford scattering: Planetary atomic model
1.2.4. Rutherford’s differential effective cross-section
Box 1.5.Rutherford (1871–1937)
1.3. Composition of the nucleus. 1.3.1. Discovery of the proton
Box 1.6. Blackett (1897–1974); Bothe (1891–1954)
1.3.2. Discovery of the neutron
Box 1.7.Chadwick (1891–1974)
1.3.3. Internal structure of nucleons: u and d quarks
Box 1.8. Gell-Mann (1929–2019); Zweig (born 1937)
1.3.4. Isospin
1.3.5. Nuclear spin
1.3.6. Nuclear magnetic moment
1.4. Nucleus dimensions. 1.4.1. Nuclear radius
1.4.2. Nuclear density, skin thickness
Box 1.9. Saxon (1920–2005)
1.5. Nomenclature of nuclides. 1.5.1. Isotopes, isobars, isotones
Box 1.10. Soddy (1877-1956)
1.5.2. Mirror nuclei, Magic nuclei
1.6. Nucleus stability. 1.6.1. Atomic mass unit
1.6.2. Segrè diagram, nuclear energy surface
Box 1.11. Segrè (1905–1989)
1.6.3. Mass defect, binding energy
1.6.4. Binding energy per nucleon, Aston curve
Box 1.12. Aston (1877-1945)
1.6.5. Separation energy of a nucleon
1.6.6. Nuclear forces
1.7. Exercises
Box 1.13. Goldstein (1850–1930)
1.8. Solutions to exercises
2. Nuclear Deexcitations
2.1. Nuclear shell model. 2.1.1. Overview of nuclear models
2.1.2. Individual state of a nucleon
2.1.3. Form of the harmonic potential
2.1.4. Shell structure derived from a harmonic potential
2.1.5. Shell structure derived from a Woods–Saxon potential
Box 2.1. Yukawa (1905–1981); Goeppert-Mayer (1906–1970); Jensen (1907–1973)
2.2. Angular momentum and parity. 2.2.1. Angular momentum and parity of ground state
2.2.2. Angular momentum and parity of an excited state
2.3. Gamma deexcitation. 2.3.1. Definition, deexcitation energy
2.3.2. Angular momentum and multipole order of γ-radiation
2.3.3. Classification of γ-transitions, parity of γ-radiation
2.3.4. γ-transition probabilities, Weisskopf estimates
2.3.5. Conserving angular momentum and parity
Box 2.2. Weisskopf (1908–2002)
2.4. Internal conversion. 2.4.1. Definition
2.4.2. Internal conversion coefficients
2.4.3. Partial conversion coefficients
2.4.4. K-shell conversion
2.5. Deexcitation by nucleon emission. 2.5.1. Definition
2.5.2. Energy balance
2.5.3. Bound levels and virtual levels
2.5.4. Study of an example of delayed-neutron emission
2.6. Bethe–Weizsäcker semi-empirical mass formula. 2.6.1. Presentation of the liquid-drop model
2.6.2. Bethe–Weizsäcker formula, binding energy
2.6.3. Volume energy, surface energy
2.6.4. Coulomb energy
2.6.5. Asymmetry energy, pairing energy
2.6.6. Principle of semi-empirical evaluation of coefficients in Bethe–Weizsäcker form
2.6.7. Isobar binding energy, the most stable isobar
2.7. Mass parabola equation for odd A. 2.7.1. Expression
2.7.2. Determining the nuclear charge of the most stable isobar from the decay energy
2.7.3. Mass parabola equation for even A
Box 2.3. Bethe (1906–2005); Weizsäcker (1912–2007)
2.8. Nuclear potential barrier. 2.8.1. Definition, model of the rectangular potential well
2.8.2. Modifying the model of the rectangular potential well
2.9. Exercises
2.10. Solutions to exercises
3. Alpha Radioactivity
3.1. Experimental facts. 3.1.1. Becquerel’s observations, radioactivity
Box 3.1. Becquerel (1852–1908)
3.1.2. Discovery of α radioactivity and β − radioactivity
Box 3.2. Marie Curie (1867–1934); Pierre Curie (1859–1906); Soddy (1877–1956)
3.1.3. Discovery of the positron
Box 3.3. Anderson (1905–1991); Neddermeyer (1907–1988)
3.1.4. Discovery of the neutrino, Cowan and Reines experiment
Box 3.4. Cowan (1919–1974); Reines (1918–1998)
3.1.5. Highlighting α, β and γ radiation
3.2. Radioactive decay. 3.2.1. Rutherford and Soddy’s empirical law
3.2.2. Radioactive half-life
3.2.3. Average lifetime of a radioactive nucleus
3.2.4. Activity of a radioactive source
3.3. α radioactivity. 3.3.1. Balanced equation
3.3.2. Mass defect (loss of matter), decay energy
3.3.3. Decay energy diagram
3.3.4. Fine structure of α lines
3.3.5. Geiger–Nuttall law
3.3.6. Quantum model ofα emission by tunnel effect
3.3.7. Estimating the radioactive half-life, Gamow factor
Box 3.5. Gamow (1906–1968); Gurney (1898–1953); Condon (1902–1974)
3.4. Exercises
3.5. Solutions to exercises
4. Beta Radioactivity, Radioactive Family Tree
4.1. Beta radioactivity. 4.1.1. Experiment of Frédéric and Irène Joliot-Curie: discovery of artificial radioactivity
Box 4.1. Irène Joliot (1897–1956);Frédéric Joliot (1900–1958); Townsend (1868–1967)
4.1.2. Balanced equation, β decay energy
4.1.3. Continuous β emission spectrum
4.1.4. Sargent diagram, β transition selection rules
Box 4.2. Sargent (1906–1993); Teller (1908–2003)
4.1.5. Decay energy diagram
4.1.6. Condition of β + emission
4.1.7. Decay by electron capture
4.1.8. Double β decay, branching ratio
4.1.9. Atomic deexcitation, Auger effect
Box 4.3. Fermi (1901–1954); Siegbahn (1886–1978); Auger (1899–1993)
4.2. Radioactive family trees. 4.2.1. Definition
4.2.2. Simple two-body family tree
4.2.3. Multi-body family tree, Bateman equations
4.2.4. Secular equilibrium
Box 4.4. Bateman (1882−1946)
4.3. Radionuclide production by nuclear bombardment. 4.3.1. General aspects
4.3.2. Production rate of a radionuclide
4.3.3. Production yield of a radionuclide
4.4. Natural radioactive series. 4.4.1. Presentation
4.4.2. Thorium (4n) family
4.4.3. Neptunium (4n + 1) family
4.4.4. Uranium-235 (4n +2) family
4.4.5. Uranium-238 (4n + 3) family
4.5. Exercises
4.6. Solutions to exercises
Appendix 1. Quantified Energy of the Three-Dimensional Quantum Harmonic Oscillator
A1.1. Integration of the Schrödinger equation
A1.2. Use of creation and annihilation operators
Appendix 2. Atomic Masses of Several Nuclides
References
Index
A, B
C, D
E, F
G, H
I, J
L, M
N, O
P, Q
R, S
T, U
V, W
X, Y, Z
WILEY END USER LICENSE AGREEMENT
Отрывок из книги
Ibrahima Sakho
.....
Chapter 1 is reserved for general information regarding the atomic nucleus with a view to establishing the general properties of nuclei. It begins with a presentation of the experimental facts that led to the discovery of the electron (β− particle), the proton, the neutron and the nucleus itself. It then focuses on the study of the composition and dimensions of the nucleus. Next, the nomenclature of nuclides and the stability of nuclei are studied. The chapter culminates with a series of exercises with answers.
Chapter 2 is dedicated to the study of nuclear deexcitation processes. The nuclear shell model, which offers an understanding of the discrete structure of nuclear levels, is studied in detail. Subsequently, the study examines the properties of angular momentum and parity, the processes of gamma deexcitation and internal conversion and the phenomenon of deexcitation by nuclear emission. A detailed study of the Bethe–Weizsäcker semi-empirical mass formula via the liquid-drop model and of the mass parabola equation for odd A completes the chapter and is followed by a series of exercises complete with answers.
.....