Читать книгу Физико-философские понятия: время, пространство, энергия. Серия: физика высокоразвитых цивилизаций - Иван Васильевич Пономаренко - Страница 1

Введение

Оглавление

В этой книге, мы рассмотрим физико-философские понятия «время», «пространство» и «энергия». Сделать это настоятельно необходимо, так как эти понятия сильно различаются в земной ортодоксальной науке и в науке высокоразвитой цивилизации. Эти понятия сделались камнем преткновения для земной науки. Ведь релятивисты постулировали четырёхмерное пространство-время, то есть соединили пространство и время в единый пространственно-временной континуум. В Википедии мы узнаём о времени, что Единой общепризнанной теории, объясняющей и описывающей такое понятие, как «время», в настоящее время не существует. Выдвигается множество теорий (они также могут быть частью более общих теорий и философских учений), пытающихся обосновать и описать это явление.

Вопрос времени в ортодоксальной науке запутан до полной невозможности понять, что же такое «время». В разных науках времени даются разные определения. Вот классическое определение времени, данное Ньютоном: «Абсолютное, истинное математическое время само по себе и по самой своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно, и иначе называется длительностью… Все движения могут ускоряться или замедляться, течение же абсолютного времени изменяться не может».

Понятие времени в термодинамике не рассматривается вовсе, и связь между направлением течения процессов и направлением течения времени выходит за рамки данной области физики.

В неравновесной статистической механике связь поведения энтропии со временем обозначается более явно: с течением времени энтропия изолированной неравновесной системы будет возрастать, вплоть до достижения статистического равновесия, то есть направление течения процессов постулируется совпадающим с направлением течения времени. Таким образом, время, как воспринимаемое нами с внешней стороны, как последовательность событий, так и данное в качестве внутреннего ощущения, является притоком в объём Вселенной энергии, усваиваемой всеми её составляющими. Здесь время трактуется уже как энергия, которая притекает во вселенную откуда-то из никому неизвестного места.

В квантовой физике роль времени такова же, как и в термодинамике: несмотря на квантование почти всех величин, время осталось внешним, не квантованным параметром. Хотя основные уравнения квантовой механики сами по себе обладают симметрией по отношению к знаку времени, время необратимо, благодаря взаимодействию в процессе измерения квантово-механического объекта с классическим измерительным прибором. Процесс измерения в квантовой механике несимметричен по времени. По отношению к прошлому он даёт вероятностную информацию о состоянии объекта. По отношению к будущему он сам создаёт новое состояние.

В квантовой механике имеется соотношение неопределённости для времени и энергии: закон сохранения энергии в замкнутой системе может быть проверен посредством двух измерений.

Точность квантовых часов ограничена фундаментальными законами термодинамики. Чем выше точность измерения времени, тем больше свободной энергии переходит в тепло, то есть быстрее увеличивается энтропия. Этот эффект демонстрирует связь между квантовой физикой, термодинамикой и концепцией стрелы времени.

В Специальной теории относительности использует общефилософский постулат причинности: любое событие может оказывать влияние только на события, происходящие позже него, но не может оказывать влияние на события, произошедшие раньше него. Также в Специальной теории относительности есть утверждение об инвариантности пространственно-временного интервала по отношению к группе трансляций в пространстве-времени и изотропии (инвариантность по отношению к группе вращений) пространства и времени в инерциальных системах отсчёта. Из постулата причинности и независимости скорости света от выбора системы отсчёта следует, что скорость любого сигнала не может превышать скорость света. Эти постулаты позволяют сделать вывод, что события, одновременные в одной системе отсчёта, могут быть неодновременными в другой системе отсчёта, движущейся относительно первой. Таким образом, ход времени зависит от движения системы отсчёта. Эти постулаты позволяют сделать вывод, что события, одновременные в одной системе отсчёта, могут быть неодновременными в другой системе отсчёта, движущейся относительно первой. Таким образом, ход времени зависит от движения системы отсчёта. Математически эта зависимость выражается через преобразования Лоренца. Пространство и время теряют свою самостоятельность и выступают как отдельные стороны единого пространственно-временного континуума (пространство Минковского). Взамен абсолютного времени и расстояния в трёхмерном пространстве, сохраняющихся при преобразованиях Галилея, появляется понятие инвариантного интервала, сохраняющегося при преобразованиях Лоренца. Причинно-следственный порядок событий во всех системах отсчёта не изменяется. Каждая материальная точка имеет собственное время, вообще говоря, не совпадающее с собственным временем других материальных точек.

Общая теория относительности, опираясь на принцип эквивалентности сил гравитации и инерции, обобщила понятие четырёхмерного пространства-времени Минковского на случай неинерциальных систем отсчёта и полей тяготения.

Влияние гравитационного поля на свойства четырёхмерного пространства-времени описывается метрическим тензором. Относительное замедление времени для двух точек слабого постоянного гравитационного поля равно разности гравитационных потенциалов, делённой на квадрат скорости света (гравитационное красное смещение). Чем ближе к массивному телу находятся часы, тем медленнее они отсчитывают время, на горизонте событий шварцшильдовской чёрной дыры. С точки зрения шварцшильдовского наблюдателя, ход времени полностью останавливается. Интервал времени между двумя событиями, имеющий определённую конечную длительность в одной системе отсчёта (например, время падения в чёрную дыру по собственным часам падающего объекта), может оказаться бесконечным в другой системе отсчёта (например, время падения в чёрную дыру по часам удалённого наблюдателя).

В квантовой теории поля наиболее общая взаимосвязь свойств пространства, времени и материи формулируется в виде CPT-теоремы. Она утверждает, что уравнения квантовой теории поля не изменяются при одновременном применении трёх преобразований: зарядового сопряжения C – замена всех частиц им соответствующими античастицами; пространственной инверсии P – замена знаков всех пространственных координат на противоположные; обращения времени T – замены знака времени на противоположный.

В силу CPT-теоремы, если в природе происходит некоторый процесс, то с той же вероятностью может происходить и CPT-сопряжённый процесс, то есть процесс, в котором частицы заменены соответствующими античастицами (С-преобразование), проекции их спинов поменяли знак (P-преобразование), а начальные и конечные состояния процесса поменялись местами (T-преобразование).

При применении метода диаграмм Фейнмана античастицы рассматриваются как частицы, распространяющиеся вспять по времени.

Как видите, господа читатели, Вам теперь понятно, что ничего непонятно. Земная наука физика раздроблена на множество направлений, в каждой из которых своё понимание времени. К этим направлениям в физике надо прибавить ещё большое количество философских направлений, где каждый философ имел своё представление о времени. Особое мнение о времени имеет и наука «психология». Возвращаясь к времени в физике, мы замечаем, что в некоторых физических науках время соединено с пространством, в других физических науках время имеет какое-то отношение к энергии. Поэтому мы объединили понятия «время», «пространство» и «энергия» в одной книге под названием «физико-философские понятия». Посмотрим, что говорит о этих понятиях внеземная высокоразвитая цивилизация со звёздного скопления «Стожары» («Плеяды»).

Физико-философские понятия: время, пространство, энергия. Серия: физика высокоразвитых цивилизаций

Подняться наверх