Описание книги
Представлен курс классической дифференциальной геометрии. Рассмотрены кривые в евклидовом пространстве, а также поверхности - их первая и вторая фундаментальные формы. Даны элементы дифференциального исчисления на поверхности, геодезические на поверхностях и криволинейные координаты в области и на поверхности. Освещены риманова и псевдориманова метрики, геометрия Лобачевского, топологические пространства, многообразия. Изложены касательное пространство к многообразию, дифференциал, вложения многообразий в евклидово пространство, дополнительные структуры (риманова метрика, ориентируемость), а также классификация связных компактных двумерных многообразий.
Для студентов высших учебных заведений, получающих образование по направлениям и специальностям "Математика", "Механика", "Математика. Прикладная математика". Представляет интерес для специалистов в области прикладной математики, механики и физики.