Introduction to the Physics and Techniques of Remote Sensing

Introduction to the Physics and Techniques of Remote Sensing
Автор книги: id книги: 2019600     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 15174,3 руб.     (165,49$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Отраслевые издания Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119523086 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Discover cutting edge theory and applications of modern remote sensing in geology, oceanography, atmospheric science, ionospheric studies, and more    The thoroughly revised third edition of the  Introduction to the Physics and Techniques of Remote Sensing  delivers a comprehensive update to the authoritative textbook, offering readers new sections on radar interferometry, radar stereo, and planetary radar. It explores new techniques in imaging spectroscopy and large optics used in Earth orbiting, planetary, and astrophysics missions. It also describes remote sensing instruments on, as well as data acquired with, the most recent Earth and space missions.  Readers will benefit from the brand new and up-to-date concept examples and full-color photography, 50% of which is new to the series. You’ll learn about the basic physics of wave/matter interactions, techniques of remote sensing across the electromagnetic spectrum (from ultraviolet to microwave), and the concepts behind the remote sensing techniques used today and those planned for the future.  The book also discusses the applications of remote sensing for a wide variety of earth and planetary atmosphere and surface sciences, like geology, oceanography, resource observation, atmospheric sciences, and ionospheric studies. This new edition also incorporates:  A fulsome introduction to the nature and properties of electromagnetic waves An exploration of sensing solid surfaces in the visible and near infrared spectrums, as well as thermal infrared, microwave, and radio frequencies A treatment of ocean surface sensing, including ocean surface imaging and the mapping of ocean topography A discussion of the basic principles of atmospheric sensing and radiative transfer, including the radiative transfer equation Perfect for senior undergraduate and graduate students in the field of remote sensing instrument development, data analysis, and data utilization,  Introduction to the Physics and Techniques of Remote Sensing  will also earn a place in the libraries of students, faculty, researchers, engineers, and practitioners in fields like aerospace, electrical engineering, and astronomy.

Оглавление

Jakob J. van Zyl. Introduction to the Physics and Techniques of Remote Sensing

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

WILEY SERIES IN REMOTE SENSING

Introduction to the Physics and Techniques of Remote Sensing

Preface

1 Introduction

1.1 Types and Classes of Remote Sensing Data

1.2 Brief History of Remote Sensing

1.3 Remote Sensing Space Platforms

1.4 Transmission Through the Earth and Planetary Atmospheres

References and Further Reading

2 Nature and Properties of Electromagnetic Waves. 2.1 Fundamental Properties of Electromagnetic Waves

2.1.1 Electromagnetic Spectrum

2.1.2 Maxwell’s Equations

2.1.3 Wave Equation and Solution

2.1.4 Quantum Properties of Electromagnetic Radiation

2.1.5 Polarization

2.1.6 Coherency

2.1.7 Group and Phase Velocity

2.1.8 Doppler Effect

2.2 Nomenclature and Definition of Radiation Quantities

2.2.1 Radiation Quantities

2.2.2 Spectral Quantities

2.2.3 Luminous Quantities

2.3 Generation of Electromagnetic Radiation

2.4 Detection of Electromagnetic Radiation

2.5 Interaction of Electromagnetic Waves with Matter: Quick Overview

2.6 Interaction Mechanisms Throughout the Electromagnetic Spectrum

Exercises

References and Further Reading

3 Solid Surfaces Sensing in the Visible and Near Infrared

3.1 Source Spectral Characteristics

3.2 Wave–Surface Interaction Mechanisms

3.2.1 Reflection, Transmission, and Scattering

3.2.2 Vibrational Processes

3.2.3 Electronic Processes

3.2.3.1 Crystal Field Effect

3.2.3.2 Charge Transfer

3.2.3.3 Conjugate Bonds

3.2.3.4 Materials with Energy Bands

3.2.4 Fluorescence

3.3 Signature of Solid Surface Materials

3.3.1 Signature of Geologic Materials

3.3.2 Signature of Biologic Materials

3.3.3 Depth of Penetration

3.4 Passive Imaging Sensors

3.4.1 Imaging Basics

3.4.2 Sensor Elements

3.4.3 Detectors

3.5 Types of Imaging Systems

3.6 Description of Some Visible/Infrared Imaging Sensors

3.6.1 Landsat Enhanced Thematic Mapper Plus (ETM+)

3.6.2 Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)

3.6.3 Mars Orbiter Camera (MOC)

3.6.4 Mars Exploration Rover Panchromatic Camera (Pancam)

3.6.5 Cassini Imaging Instrument

3.6.6 Juno Imaging System

3.6.7 Europa Imaging System

3.6.8 Cassini Visual and Infrared Mapping Spectrometer (VIMS)

3.6.9 Chandrayaan Imaging Spectrometer M3

3.6.10 Sentinel Multispectral Imager

3.6.11 Airborne Visible‐Infrared Imaging Spectrometer (AVIRIS)

3.7 Active Sensors

3.8 Surface Sensing at Very Short Wavelengths

3.8.1 Radiation Sources

3.8.2 Detection

3.9 Image Data Analysis

3.9.1 Detection and Delineation

3.9.2 Classification

3.9.3 Identification

Exercises

References and Further Reading

4 Solid‐Surface Sensing: Thermal Infrared

4.1 Thermal Radiation Laws

4.1.1 Emissivity of Natural Terrain

4.1.2 Emissivity from the Sun and Planetary Surfaces

4.2 Heat Conduction Theory

4.3 Effect of Periodic Heating

4.4 Use of Thermal Emission in Surface Remote Sensing

4.4.1 Surface Heating by the Sun

4.4.2 Effect of Surface Cover

4.4.3 Separation of Surface Units Based on Their Thermal Signature

4.4.4 Example of Application in Geology

4.4.5 Effects of Clouds on Thermal Infrared Sensing

4.5 Use of Thermal Infrared Spectral Signature in Sensing

4.6 Thermal Infrared Sensors

4.6.1 Heat Capacity Mapping Radiometer

4.6.2 Thermal Infrared Multispectral Scanner

4.6.3 ASTER Thermal Infrared Imager

4.6.4 Spitzer Space Telescope

4.6.5 2001 Mars Odyssey Thermal Emission Imaging System (THEMIS)

4.6.6 Advanced Very High Resolution Radiometer (AVHRR)

Exercises

References and Further Reading

5 Solid‐Surface Sensing: Microwave Emission

5.1 Power‐Temperature Correspondence

5.2 Simple Microwave Radiometry Models

5.2.1 Effects of Polarization

5.2.2 Effects of the Observation Angle

5.2.3 Effects of the Atmosphere

5.2.4 Effects of Surface Roughness

5.3 Applications and Use in Surface Sensing

5.3.1 Application in Polar Ice Mapping

5.3.2 Application in Soil Moisture Mapping

5.3.3 Measurement Ambiguity

5.4 Description of Microwave Radiometers

5.4.1 Antenna and Scanning Configuration for Real‐Aperture Radiometers

5.4.2 Synthetic Aperture Radiometers

5.4.3 Receiver Subsystems

5.4.4 Data Processing

5.5 Examples of Developed Radiometers

5.5.1 Scanning Multichannel Microwave Radiometer (SMMR)

5.5.2 Special Sensor Microwave Imager (SSM/I)

5.5.3 Tropical Rainfall Mapping Mission Microwave Imager (TMI)

5.5.4 AMSR‐E

5.5.5 SMAP Radiometer

Exercises

Refevrences and Further Reading

6 Solid‐Surface Sensing: Microwave and Radio Frequencies

6.1 Surface Interaction Mechanism

6.1.1 Surface Scattering Models

6.1.1.1 First‐Order Small Perturbation Model

6.1.1.2 The Integral Equation Model

6.1.2 Absorption Losses and Volume Scattering

6.1.3 Effects of Polarization

6.1.4 Effects of the Frequency

6.1.5 Effects of the Incidence Angle

6.1.6 Scattering from Natural Terrain

6.2 Basic Principles of Radar Sensors

6.2.1 Antenna Beam Characteristics

6.2.2 Signal Properties: Spectrum

6.2.3 Signal Properties: Modulation

6.2.4 Range Measurements and Discrimination

6.2.5 Doppler (Velocity) Measurement and Discrimination

6.2.6 High‐Frequency Signal Generation

6.3 Imaging Sensors: Real Aperture Radars

6.3.1 Imaging Geometry

6.3.2 Range Resolution

6.3.3 Azimuth Resolution

6.3.4 Radar Equation

6.3.5 Signal Fading

6.3.6 Fading Statistics

6.3.7 Geometric Distortion

6.4 Imaging Sensors: Synthetic Aperture Radars

6.4.1 Synthetic Array Approach

6.4.2 Focused vs. Unfocused SAR

6.4.3 Doppler Synthesis Approach

6.4.4 SAR Imaging Coordinate System

6.4.5 Ambiguities and Artifacts

6.4.6 Point Target Response

6.4.7 Correlation with Point Target Response

6.4.8 Advanced SAR Techniques

6.4.8.1 SAR Polarimetry

6.4.8.2 SAR Interferometry

6.4.8.2.1 Radar Interferometry for Measuring Topography

6.4.8.2.2 Radar Interferometry for Measuring Surface Velocity

6.4.8.2.3 Differential Interferometry for Surface Deformation Studies

6.4.8.3 Polarimetric Interferometry

6.4.9 Description of SAR Sensors and Missions

6.4.9.1 Shuttle Imaging Radar Missions: SIR‐A, SIR‐C/X‐SAR, and SRTM

6.4.9.1.1 Earth Orbiting Free‐Flying SAR Missions

6.4.9.1.2 A Joint NASA/ISRO Mission (NiSAR)

6.4.9.2 Planetary SAR Sensors: Magellan Radar and Cassini Radar

6.4.10 Applications of Imaging Radars

6.5 Nonimaging Radar Sensors: Scatterometers

6.5.1 Examples of Scatterometer Instruments

6.5.1.1 Seasat Scatterometer

6.5.1.2 SeaWinds on QuikScat

6.5.2 Examples of Scatterometer Data

6.6 Nonimaging Radar Sensors: Altimeters

6.6.1 Examples of Altimeter Instruments

6.6.1.1 The Seasat Altimeter

6.6.1.2 The Topex/Poseidon Altimeter Mission

6.6.1.2.1 Jason Altimeter

6.6.1.2.2 Sentinel 3 Synthetic Aperture Altimeter

6.6.2 Altimeter Applications

6.6.3 Imaging Altimetry

6.6.4 Wide Swath Ocean Altimeter

6.7 Nonconventional Radar Sensors

6.8 Subsurface Sounding

Exercises

References and Further Reading

7 Ocean Surface Sensing

7.1 Physical Properties of the Ocean Surface

7.1.1 Tides and Currents

7.1.2 Surface Waves

7.2 Mapping of the Ocean Topography

7.2.1 Geoid Measurement

7.2.2 Surface Wave Effects

7.2.3 Surface Wind Effects

7.2.4 Dynamic Ocean Topography

7.2.5 Ancillary Measurements

7.3 Surface Wind Mapping

7.3.1 Observations Required

7.3.2 Nadir Observations

7.4 Ocean Surface Imaging

7.4.1 Radar Imaging Mechanisms

7.4.2 Examples of Ocean Features on Radar Images

7.4.3 Imaging of Sea Ice

7.4.4 Ocean Color Mapping

7.4.5 Ocean Surface Temperature Mapping

7.4.6 Ocean Salinity Mapping

Exercises

References and Further Reading

8 Basic Principles of Atmospheric Sensing and Radiative Transfer

8.1 Physical Properties of the Atmosphere

8.2 Atmospheric Composition

8.3 Particulates and Clouds

8.4 Wave Interaction Mechanisms in Planetary Atmospheres

8.4.1 Resonant Interactions

8.4.2 Spectral Line Shape

8.4.3 Nonresonant Absorption

8.4.4 Nonresonant Emission

8.4.5 Wave Particle Interaction, Scattering

8.4.6 Wave Refraction

8.5 Optical Thickness

8.6 Radiative Transfer Equation

8.7 Case of a Nonscattering Plane Parallel Atmosphere

8.8 Basic Concepts of Atmospheric Remote Sounding

8.8.1 Basic Concept of Temperature Sounding

8.8.2 Basic Concept for Composition Sounding

8.8.3 Basic Concept for Pressure Sounding

8.8.4 Basic Concept of Density Measurement

8.8.5 Basic Concept of Wind Measurement

Exercises

References and Further Reading

9 Atmospheric Remote Sensing in the Microwave Region

9.1 Microwave Interactions with Atmospheric Gases

9.2 Basic Concept of Downlooking Sensors

9.2.1 Temperature Sounding

9.2.2 Constituent Density Profile: Case of Water Vapor

9.3 Basic Concept for Uplooking Sensors

9.4 Basic Concept for Limblooking Sensors

9.5 Inversion Concepts

9.6 Basic Elements of Passive Microwave Sensors

9.7 Surface Pressure Sensing

9.8 Atmospheric Sounding by Occultation

9.9 Microwave Scattering by Atmospheric Particles

9.10 Radar Sounding of Rain

9.11 Radar Equation for Precipitation Measurement

9.12 The Tropical Rainfall Measuring Mission (TRMM)

9.13 Rain Cube

9.14 CloudSat

9.15 Cassini Microwave Radiometer

9.16 Juno Microwave Radiometer (MWR)

Exercises

References and Further Reading

10 Millimeter and Submillimeter Sensing of Atmospheres

10.1 Interaction with Atmospheric Constituents

10.2 Downlooking Sounding

10.3 Limb Sounding

10.4 Elements of a Millimeter Sounder

10.5 Submillimeter Atmospheric Sounder

Exercises

References and Further Reading

11 Atmospheric Remote Sensing in the Visible and Infrared

11.1 Interaction of Visible and Infrared Radiation with the Atmosphere

11.1.1 Visible and Near‐Infrared Radiation

11.1.2 Thermal Infrared Radiation

11.1.3 Resonant Interactions

11.1.4 Effects of Scattering by Particulates

11.2 Downlooking Sounding

11.2.1 General Formulation for Emitted Radiation

11.2.2 Temperature Profile Sounding

11.2.3 Simple Case Weighting Functions

11.2.4 Weighting Functions for Off‐Nadir Observations

11.2.5 Composition Profile Sounding

11.3 Limb Sounding

11.3.1 Limb Sounding by Emission

11.3.2 Limb Sounding by Absorption

11.3.3 Illustrative Example: Pressure Modulator Radiometer

11.3.4 Illustrative Example: Fourier Transform Spectroscopy

11.4 Sounding of Atmospheric Motion

11.4.1 Passive Techniques

11.4.2 Passive Imaging of Velocity Field: Helioseismology

11.4.3 Multi‐Angle Imaging SpectroRadiometer (MISR)

11.4.4 Multi‐Angle Imager for Aerosols (MAIA)

11.4.5 Active Techniques

11.5 Laser Measurement of Wind

11.6 Atmospheric Sensing at Very Short Wavelengths

Exercises

References and Further Reading

12 Ionospheric Sensing

12.1 Properties of Planetary Ionospheres

12.2 Wave Propagation in Ionized Media

12.3 Ionospheric Profile Sensing by Topside Sounding

12.4 Ionospheric Profile by Radio Occultation

Exercises

References and Further Reading

Appendix A Use of Multiple Sensors for Surface Observations

Appendix B Summary of Orbital Mechanics Relevant to Remote Sensing

B.1 Circular Orbits. B.1.1 General Characteristics

B.1.2 Geosynchronous Orbits

B.1.3 Sun‐Synchronous Orbit

B.1.4 Coverage

B.2 Elliptical Orbits

B.3 Orbit Selection

Exercises

Appendix C Simplified Weighting Functions. C.1 Case of Downlooking Sensors (Exponential Atmosphere)

C.2 Case of Downlooking Sensors (Linear Atmosphere)

C.3 Case of Upward‐Looking Sensors

Appendix D Compression of a Linear FM Chirp Signal

Case 1: t ≤ tR

Case 2: t ≥ tR

Index. a

b

c

d

e

g

h

i

j

l

m

o

p

r

s

t

u

v

w

x

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Jin Au Kong, Editor

Asrar • THEORY AND APPLICATIONS OF OPTICAL REMOTE SENSING

.....

Tsang and Kong • SCATTERING OF ELECTROMAGNETIC WAVES: ADVANCED TOPICS

Udd • FIBER OPTIC SMART STRUCTURES

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Introduction to the Physics and Techniques of Remote Sensing
Подняться наверх