Synthesis Gas

Synthesis Gas
Авторы книги: id книги: 1887756     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 24049,2 руб.     (238,87$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Физика Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119707899 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

As a follow-up to the <i>Handbook of Gasification Technology</i>, also from Wiley-Scrivener, Synthesis Gas goes into more depth on how the products from this important technology can reduce our global carbon footprint and lead the United States, and other countries, toward energy independence. The environmental benefits are very high, and, along with carbon capture and renewable fuels, synthesis gas (or syngas) is a huge step toward environmental sustainability. <br style="background-color: transparent; box-sizing: border-box; color: #455464; font-family: « sourcesanspro»,"helvetica neue","helvetica",arial,sans-serif; font-size: 12px; font-style: normal; font-variant: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: left; text-decoration: none; text-indent: 0px; text-transform: none; -webkit-text-stroke-width: 0px; white-space: normal; word-spacing: 0px;" /><br style="background-color: transparent; box-sizing: border-box; color: #455464; font-family: « sourcesanspro»,"helvetica neue","helvetica",arial,sans-serif; font-size: 12px; font-style: normal; font-variant: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: left; text-decoration: none; text-indent: 0px; text-transform: none; -webkit-text-stroke-width: 0px; white-space: normal; word-spacing: 0px;" />Synthesis gas is one of the most important advancements that has ever occurred in energy production. Using this technology, for example, coal, biomass, waste products, or a combination of two or more of these can be gasified into a product that has roughly half the carbon footprint of coal alone. Used on a massive scale, just think of the potential for reducing carbon emissions!<br style="background-color: transparent; box-sizing: border-box; color: #455464; font-family: « sourcesanspro»,"helvetica neue","helvetica",arial,sans-serif; font-size: 12px; font-style: normal; font-variant: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: left; text-decoration: none; text-indent: 0px; text-transform: none; -webkit-text-stroke-width: 0px; white-space: normal; word-spacing: 0px;" /><br style="background-color: transparent; box-sizing: border-box; color: #455464; font-family: « sourcesanspro»,"helvetica neue","helvetica",arial,sans-serif; font-size: 12px; font-style: normal; font-variant: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: left; text-decoration: none; text-indent: 0px; text-transform: none; -webkit-text-stroke-width: 0px; white-space: normal; word-spacing: 0px;" />Synthesis Gas covers all aspects of the technology, from the chemistry, processes, and production, to the products, feedstocks, and even safety in the plant. Whether a veteran engineer or scientist using it as a reference or a professor using it as a textbook, this outstanding new volume is a must-have for any library.

Оглавление

James G. Speight. Synthesis Gas

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Synthesis Gas. Production and Properties

Preface

1 Energy Sources and Energy Supply. 1.1 Introduction

1.2 Typical Energy Sources

1.2.1 Natural Gas and Natural Gas Hydrates

1.2.2 The Crude Oil Family

1.2.3 Extra Heavy Crude Oil and Tar Sand Bitumen

1.3 Other Energy Sources

1.3.1 Coal

1.3.2 Oil Shale

1.3.3 Biomass

1.3.4 Solid Waste

1.4 Energy Supply

1.4.1 Economic Factors

1.4.2 Geopolitical Factors

1.4.3 Physical Factors

1.4.4 Technological Factors

1.5 Energy Independence

References

2 Production of Synthesis Gas. 2.1 Introduction

2.2 Synthesis Gas Generation

2.3 Feedstocks

2.3.1 Natural Gas

2.3.2 Crude Oil Resid, Heavy Crude Oil, Extra Heavy Crude Oil, and Tar Sand Bitumen

2.3.3 Refinery Coke

2.3.4 Coal

2.3.5 Biomass

2.3.6 Solid Waste

2.3.7 Black Liquor

2.3.8 Mixed Feedstocks

2.3.8.1 Biomass and Coal

2.3.8.2 Biomass and Municipal Solid Waste

2.4 Influence of Feedstock Quality

2.5 Gasification Processes

2.5.1 Feedstock Pretreatment

2.5.2 Feedstock Devolatilization

2.5.3 Char Gasification

2.5.4 General Chemistry

2.5.5 Stage-by-Stage Chemistry

2.5.5.1 Primary Gasification

2.5.5.2 Secondary Gasification

2.5.5.3 Water Gas Shift Reaction

2.5.5.4 Carbon Dioxide Gasification

2.5.5.5 Hydrogasification

2.5.5.6 Methanation

2.5.5.7 Catalytic Gasification

2.5.6 Physical Effects

2.6 Products

2.6.1 Gaseous Products

2.6.1.1 Low Btu Gas

2.6.1.2 Medium Btu Gas

2.6.1.3 High Btu Gas

2.6.1.4 Synthesis Gas

2.6.2 Liquid Products

2.6.3 Tar

References

3 Gasifier Types and Gasification Chemistry. 3.1 Introduction

3.2 Gasifier Types

3.2.1 Fixed-Bed Gasifier

3.2.2 Fluid-Bed Gasifier

3.2.3 Entrained-Bed Gasifier

3.2.4 Molten Salt Gasifier

3.2.5 Plasma Gasifier

3.2.6 Other Types

3.2.7 Gasifier Selection

3.3 General Chemistry

3.3.1 Devolatilization

3.3.2 Products

3.4 Process Options

3.4.1 Effects of Process Parameters

3.4.2 Effect of Heat Release

3.4.3 Other Effects

References

4 Gasification of Coal. 4.1 Introduction

4.2 Coal Types and Properties

4.3 Gas Products

4.3.1 Coal Devolatilization

4.3.2 Char Gasification

4.3.3 Gasification Chemistry

4.3.4 Other Process Options

4.3.4.1 Hydrogasification

4.3.4.2 Catalytic Gasification

4.3.4.3 Plasma Gasification

4.3.5 Process Optimization

4.4 Product Quality

4.4.1 Low Btu Gas

4.4.2 Medium Btu Gas

4.4.3 High Btu Gas

4.4.4 Methane

4.4.5 Hydrogen

4.4.6 Other Gases

4.5 Chemicals Production

4.5.1 Coal Tar Chemicals

4.5.2 Fischer-Tropsch Chemicals

4.5.2.1 Fischer-Tropsch Catalysts

4.5.2.2 Product Distribution

4.6 Advantages and Limitations

References

5 Gasification of Heavy Feedstocks. 5.1 Introduction

5.2.1 Crude Oil Residua

5.2.2 Heavy Crude Oil

5.2.3 Extra Heavy Crude Oil

5.2.4 Tar Sand Bitumen

5.2.5 Other Feedstocks

5.2.5.1 Crude Oil Coke

5.2.5.2 Solvent Deasphalter Bottoms

5.3 Synthesis Gas Production

5.3.1 Partial Oxidation Technology

5.3.1.1 Shell Gasification Process

5.3.1.2 Texaco Process

5.3.1.3 Phillips Process

5.3.2 Catalytic Partial Oxidation

5.4 Products

5.4.1 Gas Purification and Quality

5.4.2 Process Optimization

5.5 Advantages and Limitations

5.5.1 Other Uses of Residua

5.5.2 Gasification in the Future Refinery

References

6 Gasification of Biomass. 6.1 Introduction

6.2 Gasification Chemistry

6.2.1 General Aspects

6.2.2 Reactions

6.2.2.1 Water Gas Shift Reaction

6.2.2.2 Carbon Dioxide Gasification

6.2.2.3 Hydrogasification

6.2.2.4 Methanation

6.3 Gasification Processes

6.3.1 Gasifiers

6.3.2 Fischer-Tropsch Synthesis

6.3.3 Feedstocks

6.3.3.1 Biomass

6.3.3.2 Gasification of Biomass with Coal

6.3.3.3 Gasification of Biomass with Other Feedstocks

6.4 Gas Production and Products

6.4.1 Gas Production

6.4.2 Gaseous Products

6.4.2.1 Synthesis Gas

6.4.2.2 Low-Btu Gas

6.4.2.3 Medium-Btu Gas

6.4.2.4 High-Btu Gas

6.4.3 Liquid Products

6.4.4 Solid Products

6.5 The Future

References

7 Gasification of Waste. 7.1 Introduction

7.2 Waste Types

7.2.1 Solid Waste

7.2.2 Municipal Solid Waste

7.2.3 Industrial Solid Waste

7.2.4 Bio-Solids

7.2.5 Biomedical Waste

7.2.6 Sewage Sludge

7.3 Feedstock Properties

7.4 Fuel Production

7.4.1 Preprocessing

7.4.2 Process Design

7.5 Process Products

7.5.1 Synthesis Gas

7.5.2 Carbon Dioxide

7.5.3 Tar

7.5.4 Particulate Matter

7.5.5 Halogens/Acid Gases

7.5.6 Heavy Metals

7.5.7 Alkalis

7.5.8 Slag

7.6 Advantages and Limitations

References

8 Reforming Processes. 8.1 Introduction

8.2 Processes Requiring Hydrogen

8.2.1 Hydrotreating

8.2.2 Hydrocracking

8.3 Feedstocks

8.4 Process Chemistry

8.5 Commercial Processes

8.5.1 Autothermal Reforming

8.5.2 Combined Reforming

8.5.3 Dry Reforming

8.5.4 Steam-Methane Reforming

8.5.5 Steam-Naphtha Reforming

8.6 Catalysts

8.6.1 Reforming Catalysts

8.6.2 Shift Conversion Catalysts

8.6.3 Methanation Catalysts

8.7 Hydrogen Purification

8.7.1 Wet Scrubbing

8.7.2 Pressure-Swing Adsorption Units

8.7.3 Membrane Systems

8.7.4 Cryogenic Separation

8.8 Hydrogen Management

References

9 Gas Conditioning and Cleaning. 9.1 Introduction

9.2 Gas Streams

9.3 Synthesis Gas Cleaning

9.3.1 Composition

9.3.2 Process Types

9.4 Water Removal

9.4.1 Absorption

9.4.2 Adsorption

9.4.3 Cryogenics

9.5 Acid Gas Removal

9.5.1 Adsorption

9.5.2 Absorption

9.5.3 Chemisorption

9.5.4 Other Processes

9.6 Removal of Condensable Hydrocarbons

9.6.1 Extraction

9.6.2 Absorption

9.6.3 Fractionation

9.6.4 Enrichment

9.7 Tar Removal

9.7.1 Physical Methods

9.7.2 Thermal Methods

9.8 Other Contaminant Removal

9.8.1 Nitrogen Removal

9.8.2 Ammonia Removal

9.8.3 Particulate Matter Removal

9.8.4 Siloxane Removal

9.8.6.1 Biofiltration

9.8.6.2 Bioscrubbing

9.8.6.3 Bio-Oxidation

9.9 Tail Gas Cleaning

9.9.1 Claus Process

9.9.2 SCOT Process

References

10 The Fischer-Tropsch Process. 10.1 Introduction

10.2 History and Development of the Process

10.3 Synthesis Gas

10.4 Production of Synthesis Gas

10.4.1 Feedstocks

10.4.2 Product Distribution

10.5 Process Parameters

10.6 Reactors and Catalysts

10.6.1 Reactors

10.6.2 Catalysts

10.7 Products and Product Quality

10.7.1 Products

10.7.2 Product Quality

10.8 Fischer-Tropsch Chemistry

10.8.1 Chemical Principles

10.8.2 Refining Fischer-Tropsch Products

References

11 Synthesis Gas in the Refinery. 11.1 Introduction

11.2 Processes and Feedstocks

11.2.1 Gasification of Residua

11.2.2 Gasification of Residua with Coal

11.2.3 Gasification of Residua with Biomass

11.2.4 Gasification of Residua with Waste

11.3 Synthetic Fuel Production

11.3.1 Fischer-Tropsch Synthesis

11.3.2 Fischer-Tropsch Liquids

11.3.3 Upgrading Fischer-Tropsch Liquids

11.3.3.1 Gasoline Production

11.3.3.2 Diesel Production

11.4 Sabatier-Senderens Process

11.4.1 Methanol Production

11.4.2 Dimethyl Ether Production

11.5 The Future

References

12 Hydrogen Production. 12.1 Introduction

12.2 Processes

12.2.1 Feedstocks

12.2.2 Commercial Processes

12.2.2.1 Hydrocarbon Gasification

12.2.2.2 Hypro Process

12.2.2.3 Hydrogen from Pyrolysis Processes

12.2.2.4 Hydrogen from Refinery Gas

12.2.2.5 Other Options

12.2.3 Process Chemistry

12.3 Hydrogen Purification

12.3.1 Wet Scrubbing

12.3.2 Pressure-Swing Adsorption

12.3.3 Membrane Systems

12.3.4 Cryogenic Separation

12.4 Hydrogen Management

References

13 Chemicals from Synthesis Gas. 13.1 Introduction

13.2 Historical Aspects and Overview

13.3 The Petrochemical Industry

13.4 Petrochemicals

13.4.1 Primary Petrochemicals

13.4.2 Products and End Use

13.4.3 Production of Petrochemicals

13.4.4 Gaseous Fuels and Chemicals

13.4.4.1 Ammonia

13.4.4.2 Hydrogen

13.4.4.3 Synthetic Natural Gas

13.4.5 Liquid Fuels and Chemicals

13.4.5.1 Fischer-Tropsch Liquids

13.4.5.2 Methanol

13.4.5.3 Dimethyl Ether

13.4.5.4 Methanol-to-Gasoline and Olefins

13.4.5.5 Other Processes

13.5 The Future

References

14Technology Integration. 14.1 Introduction

14.2 Applications and Products

14.2.1 Chemicals and Fertilizers

14.2.2 Substitute Natural Gas

14.2.3 Hydrogen for Crude Oil Refining

14.2.4 Transportation Fuels

14.2.5 Transportation Fuels from Tar Sand Bitumen

14.2.6 Power Generation

14.2.7 Waste-to-Energy Gasification

14.2.8 Biomass Gasification

14.3 Environmental Benefits

14.3.1 Carbon Dioxide

14.3.2 Air Emissions

14.3.3 Solids Generation

14.3.4 Water Use

14.4 A Process for Now and the Future

14.4.1 The Process

14.4.2 Refinery of the Future

14.4.3 Economic Aspects

14.4.4 Market Outlook

14.5 Conclusions

References

Conversion Factors. 1. General

2. Concentration Conversions

3. Weight Conversion

4. Temperature Conversions

5. Area

6. Other Approximations

7. SI Metric Conversion Factors

Glossary

About the Author

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Scrivener Publishing 100 Cummings Center, Suite 541J Beverly, MA 01915-6106

.....

In addition, commercial oil stocks in the United States have been at their lowest level in three decades. Total crude oil inventories, which include commercial and stocks in the Strategic Petroleum Reserve (SPR) are relatively low, in terms of daily coverage. Current commercial inventories are near the level at which spot shortages can occur. The past decade has seen scenarios in which the decline in commercial stocks is greater than the increase in the Strategic Petroleum Reserve, and the capacity of the Strategic Petroleum Reserve and commercial stocks to deal with a crisis is less than before the refilling program began (Williams and Alhajji, 2003). Moreover, the premature release of crude oil from the Strategic Petroleum Reserve can jeopardize national security in case of continued political problems in the oil-producing countries and weakens the ability of the United States to respond to real shortages.

Although some of the oil-importing countries have made progress in reducing their dependence on oil, the dependence of the United States on crude oil has increased in recent years from 38% of total energy consumption in 1995 to approximately 40% at the current time. This indicates two possible areas of concern regarding the extent to which crude oil influences energy security: (i) the increase in the crude oil share of energy use, and (ii) the inability or unwillingness of the United States to reduce dependence on imported oil.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Synthesis Gas
Подняться наверх