Handbook of Microwave Component Measurements

Handbook of Microwave Component Measurements
Автор книги: id книги: 1887750     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 16486,5 руб.     (162,25$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Техническая литература Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119477129 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Handbook of Microwave Component Measurements Second Edition is a fully updated, complete reference to this topic, focusing on the modern measurement tools, such as a Vector Network Analyzer (VNA), gathering in one place all the concepts, formulas, and best practices of measurement science. It includes basic concepts in each chapter as well as appendices which provide all the detail needed to understand the science behind microwave measurements. The book offers an insight into the best practices for ascertaining the true nature of the device-under-test (DUT), optimizing the time to setup and measure, and to the greatest extent possible, remove the effects of the measuring equipment from that result. Furthermore, the author writes with a simplicity that is easily accessible to the student or new engineer, yet is thorough enough to provide details of measurement science for even the most advanced applications and researchers. This welcome new edition brings forward the most modern techniques used in industry today, and recognizes that more new techniques have developed since the first edition published in 2012. Whilst still focusing on the VNA, these techniques are also compatible with other vendor's advanced equipment, providing a comprehensive industry reference.

Оглавление

Joel P. Dunsmore. Handbook of Microwave Component Measurements

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Handbook of Microwave Component Measurements. With Advanced VNA Techniques

Foreword to the Second Edition

Foreword to the First Edition

Preface to the Second Edition

Preface to the First Edition

Acknowledgments for the Second Edition

Acknowledgments from the First Edition

1 Introduction to Microwave Measurements

1.1 Modern Measurement Process

1.2 A Practical Measurement Focus

1.3 Definition of Microwave Parameters

1.3.1 S‐Parameter Primer

1.3.2 Phase Response of Networks

1.4 Power Parameters. 1.4.1 Incident and Reflected Power

1.4.2 Available Power

1.4.3 Delivered Power

1.4.4 Power Available from a Network

1.4.5 Available Gain

1.5 Noise Figure and Noise Parameters

1.5.1 Noise Temperature

1.5.2 Effective or Excess Input Noise Temperature

1.5.3 Excess Noise Power and Operating Temperature

1.5.4 Noise Power Density

1.5.5 Noise Parameters

1.6 Distortion Parameters

1.6.1 Harmonics

1.6.2 Second‐Order Intercept

1.6.3 Two‐Tone Intermodulation Distortion

1.6.4 Adjacent Channel Power and Adjacent Channel Level Ratio

1.6.5 Noise Power Ratio (NPR)

1.6.6 Error Vector Magnitude (EVM)

1.7 Characteristics of Microwave Components

1.8 Passive Microwave Components. 1.8.1 Cables, Connectors, and Transmission Lines. 1.8.1.1 Cables

1.8.2 Connectors

1.8.2.1 7 mm Connector (APC‐7, GPC‐7)

1.8.2.2 Type‐N 50 Ω Connector

1.8.2.3 Type‐N 75 Ω Connector

1.8.2.4 3.5 mm and SMA Connectors

1.8.2.5 2.92 mm Connector

1.8.2.6 2.4 mm Connector

1.8.2.7 1.85 mm Connectors

1.8.2.8 1 mm Connector

1.8.2.9 PC Board Launches and Cable Connectors

1.8.3 Non‐coaxial Transmission Lines

1.8.3.1 Microstrip

1.8.3.2 Other Quasi‐Microstrip Structures

1.8.3.3 Coplaner Waveguide

1.8.3.4 Stripline

1.9 Filters

1.10 Directional Couplers

1.11 Circulators and Isolators

1.12 Antennas

1.13 PC Board Components

1.13.1 SMT Resistors

1.13.2 SMT Capacitors

1.13.3 SMT Inductors

1.13.4 PC Board Vias

1.14 Active Microwave Components

1.14.1 Linear and Non‐linear

1.14.2 Amplifiers: System, Low‐Noise, High Power. 1.14.2.1 System Amplifiers

1.14.2.2 Low‐Noise Amplifiers

1.14.2.3 Power Amplifiers

1.14.3 Mixers and Frequency Converters

1.14.4 Frequency Multiplier and Limiters and Dividers

1.14.4.1 Frequency Dividers

1.14.5 Oscillators

1.15 Measurement Instrumentation. 1.15.1 Power Meters

1.15.1.1 Calorimeters

1.15.1.2 RF Bolometers and Thermistor

1.15.1.3 RF Thermocouples

1.15.1.4 Diode Detectors

1.15.2 Signal Sources. 1.15.2.1 Analog Sources

1.15.2.2 Vector Sources

1.15.3 Spectrum Analyzers

1.15.4 Vector Signal Analyzers

1.15.5 Noise Figure Analyzers

1.15.6 Network Analyzers

1.15.6.1 Scalar Network Analyzers

1.15.6.2 Vector Network Analyzers

References

Note

2 VNA Measurement Systems. 2.1 Introduction

2.2 VNA Block Diagrams

2.2.1 VNA Source

2.2.2 Understanding Source‐Match

2.2.2.1 Ratio Source‐Match

2.2.2.2 Power Source‐Match

2.2.2.3 Source Output Impedance

2.2.3 VNA Test Set. 2.2.3.1 Test Set Switch

2.2.3.2 Step Attenuator Effects

2.2.3.3 Test Set Reflections

2.2.4 Directional Devices

2.2.4.1 RF Directional Bridges

2.2.4.2 Directional Couplers

2.2.4.3 1+Gamma

2.2.5 VNA Receivers

2.2.5.1 Samplers

2.2.5.2 Mixers

2.2.5.3 Noise Floor

2.2.5.4 Spurious Responses

2.2.5.5 Phase Noise

2.2.5.6 Isolation and Crosstalk

2.2.6 IF and Data Processing

2.2.6.1 ADC Design

2.2.7 Multiport VNAs

2.2.7.1 Switching Test Sets

2.2.7.2 Extension Test Sets

2.2.7.3 True‐Multiport VNAs

2.2.7.4 Calibration of Multiport VNAs

2.2.8 High‐Power Test Systems

2.2.9 VNA with mm‐Wave Extenders

2.3 VNA Measurement of Linear Microwave Parameters

2.3.1 Measurement Limitations of the VNA

2.3.1.1 Noise Floor

2.3.2 Limitations Due to External Components

2.4 Measurements Derived from S‐Parameters

2.4.1 The Smith Chart

2.4.1.1 Series and Shunt Elements

2.4.1.2 Impedance Transformation

2.4.2 Transforming S‐Parameters to Other Impedances

2.4.3 Concatenating Circuits and T‐Parameters

2.5 Modeling Circuits Using Y and Z Conversion

2.5.1 Reflection Conversion

2.5.2 Transmission Conversion

2.6 Other Linear Parameters

2.6.1 Z‐Parameters, or Open‐Circuit Impedance Parameters

2.6.2 Y‐Parameters, or Short‐Circuit Admittance Parameters

2.6.3 ABCD Parameters

2.6.4 H‐Parameters or Hybrid Parameters

2.6.5 Complex Conversions and Non‐equal Reference Impedances

References

3 Calibration and Vector Error Correction. 3.1 Introduction

3.1.1 Error Correction and Linear Measurement Methods for S‐Parameters

3.1.1.1 Signal Flow Graphs for VNA Hardware Configurations

3.1.2 Power Measurements with a VNA

3.2 Basic Error Correction for S‐Parameters: Cal‐Application

3.2.1 12‐Term Error Model

3.2.2 1‐Port Error Model

3.2.3 8‐Term Error Model

3.3 Determining Error Terms: Cal‐Acquisition for 12‐Term Models

3.3.1 1‐Port Error Terms

3.3.2 1‐Port Standards

3.3.2.1 Open Standards

3.3.2.2 Short Standards

3.3.2.3 Load Standards: Fixed Loads

3.3.2.4 Load Standards: Sliding Loads

3.3.3 2‐Port Error Terms

3.3.3.1 Isolation Standards

3.3.3.2 Thru Standards: Flush Thru

3.3.3.3 Thru Standards: Non‐insertable Thru

3.3.3.4 Swap‐Equal Adapter

3.3.3.5 Defined Thru

3.3.3.6 Adapter Removal Calibration

3.3.4 12‐Term to 11‐Term Error Model

3.4 Determining Error Terms: Cal‐Acquisition for 8‐Term Models

3.4.1 TRL Standards and Raw Measurements

3.4.1.1 Thru Standard

3.4.1.2 Line Standard

3.4.1.3 Reflect Standard

3.4.2 Special Cases for TRL Calibration. 3.4.2.1 TRM Calibration

3.4.2.2 Other TRL Considerations

3.4.3 Unknown Thru or SOLR (Reciprocal Thru Calibration)

3.4.3.1 Unknown Thru Standard

3.4.4 Applications of Unknown Thru Calibrations

3.4.4.1 Non‐insertable Coaxial Calibration

3.4.4.2 On‐Wafer Calibrations

3.4.4.3 Fixed‐Port Calibration

3.4.4.4 Switched‐Path Calibration

3.4.5 QSOLT Calibration

3.4.6 Electronic Calibration (ECal™) or Automatic Calibration

3.4.6.1 Calibration Types for Electronic Calibration Modules

3.4.6.2 User Characterization of Ecal Modules

3.5 Waveguide Calibrations

3.6 Calibration for Source Power

3.6.1 Calibrating Source Power for Source Frequency Response

3.6.2 Calibration for Power Sensor Mismatch

3.6.3 Calibration for Source Power Linearity

3.7 Calibration for Receiver Power. 3.7.1 Some Historical Perspective

3.7.2 Modern Receiver Power Calibration

3.7.2.1 Calibration for Power Sensor Mismatch

3.7.2.2 Response Correction for the Reference Receiver

3.7.3 Response Correction for the Transmission Test Receiver

3.7.3.1 Enhanced Power Calibration with Match Correction

3.7.3.2 Match Corrected Incident Power Calibration

3.7.3.3 Match‐Corrected Output Power Calibration Acquisition

3.7.3.4 Match‐Corrected Output Power Calibration Application

3.7.3.5 Measuring Match‐Corrected Reflected Power

3.7.4 Power Waves vs. Actual Waves

3.8 Calibrating Multiple Channels Simultaneously: Cal All

3.9 Multiport Calibration Strategies

3.9.1 N × 2‐Port Calibrations: Switching Test Sets

3.9.2 N‐port Calibration: True Multiport

3.9.2.1 Multiport Unknown Thru

3.9.2.2 Multiport QSOLT

3.10 Automatic In‐Situ Calibrations: CalPod

3.10.1 CalPod Initialization and Recorrection

3.10.2 CalPod‐as‐Ecal

3.11 Devolved Calibrations

3.11.1 Response Calibrations

3.11.2 Enhanced Response Calibration

3.12 Determining Residual Errors. 3.12.1 Reflection Errors

3.12.2 Using Airlines to Determine Residual Errors

3.12.2.1 Determining Directivity

3.12.2.2 Determining Source‐Match and Reflection Tracking Residual Errors

3.12.2.3 Reflection Tracking Residuals

3.12.2.4 Load Match Residual Error

3.12.2.5 Transmission Residual Errors

3.13 Computing Measurement Uncertainties

3.13.1 Uncertainty in Reflection Measurements

3.13.2 Uncertainty in Source Power

3.13.3 Uncertainty in Measuring Power (Receiver Uncertainty)

3.14 S21 or Transmission Uncertainty

3.14.1 General Uncertainty Equation for S21

3.14.2 Dynamic Uncertainty Computation

3.15 Errors in Phase

3.16 Practical Calibration Limitations

3.16.1 Cable Flexure

3.16.2 Changing Power after Calibration

3.16.3 Compensating for Changes in Step Attenuators

3.16.4 Connector Repeatability

3.16.5 Noise Effects

3.16.6 Drift: Short‐Term and Long‐Term

3.16.7 Interpolation of Error Terms

3.16.8 Calibration Quality: Electronic vs. Mechanical Kits

Reference

4 Time‐Domain Transforms. 4.1 Introduction

4.2 The Fourier Transform

4.2.1 The Continuous Fourier Transform

4.2.2 Even and Odd Functions and the Fourier Transform

4.2.2.1 Hermitian Functions

4.2.3 Modulation (Shift) Theorem

4.3 The Discrete Fourier Transform

4.3.1 Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT)

4.3.1.1 Fine Structure Response

4.3.2 Discrete Fourier Transforms

4.4 Fourier Transform (Analytic) vs. VNA Time Domain Transform

4.4.1 Defining the Fourier Transform

4.4.2 Effects of Discrete Sampling

4.4.3 Effects of Truncated Frequency

4.4.3.1 Causality

4.4.4 Windowing to Reduce Effects of Truncation

4.4.5 Scaling and Renormalization

4.5 Low‐Pass Transforms

4.5.1 Low‐Pass Impulse Mode

4.5.2 DC Extrapolation

4.5.3 Low‐Pass Step Mode

4.5.4 Band‐Pass Mode

4.6 Time‐Domain Gating

4.6.1 Gating Loss and Renormalization

4.7 Examples of Time‐Domain Transforms of Various Networks. 4.7.1 Time‐Domain Response of Changes in Line Impedance

4.7.2 Time‐Domain Response of Discrete Discontinuities

4.7.3 Time‐Domain Responses of Various Circuits

4.8 The Effects of Masking and Gating on Measurement Accuracy

4.8.1 Compensation for Changes in Line Impedance

4.8.2 Compensation for Discrete Discontinuities

4.8.3 Time‐Domain Gating. 4.8.3.1 Gating the First of Two Discontinuities

4.8.3.2 Gating the Second of Two Discontinuities

4.8.3.3 Compensation for a Combination of Discontinuities and Line Impedance Changes

4.8.4 Estimating an Uncertainty Due to Masking

4.9 Time‐Domain Transmission Using VNA

4.10 Conclusions

References

5 Measuring Linear Passive Devices

5.1 Transmission Lines, Cables, and Connectors

5.1.1 Calibration for Low Loss Devices with Connectors

5.1.2 Measuring Electrically Long Devices

5.1.2.1 IF Delay

5.1.3 Attenuation Measurements

5.1.3.1 Connector Compensation Using Port Matching

5.1.3.2 Connector Compensation Using Time‐Domain Gating

5.1.3.3 Attenuation Measurements on Very Long Cables

5.1.3.4 In‐Situ Calibration and CalPods

5.1.3.5 Time‐Domain Responses and One‐Way Measurements

5.1.4 Return Loss Measurements

5.1.4.1 Measuring In‐Line Cable Connectors

5.1.4.2 Structural Return Loss

5.1.4.3 Cable Impedance

5.1.5 Cable Length and Delay

5.2 Filters and Filter Measurements

5.2.1 Filter Classes and Difficulties

5.2.2 Duplexer and Diplexers

5.2.3 Measuring Tunable High‐Performance Filters

5.2.3.1 Filters with Very Low Loss and Well Matched In‐Band

5.2.3.2 Measuring Filter Return Loss

5.2.4 Measuring Transmission Response

5.2.4.1 Passband Measurement

5.2.4.2 Excess Loss

5.2.4.3 Limit Testing for Transmission

5.2.4.4 Evaluating Ripple Using Statistics

5.2.5 High Speed vs. Dynamic Range

5.2.5.1 Segmented Sweeps

5.2.6 Extremely High Dynamic Range Measurements

5.2.6.1 Group Delay Measurements

5.2.6.2 Long Delay (SAW) Filters

5.2.6.3 Deviation from Linear Phase

5.2.7 Calibration Considerations

5.3 Multiport Devices

5.3.1 Differential Cables and Lines

5.3.2 Couplers

5.3.3 Hybrids, Splitters, and Dividers

5.3.3.1 90° Hybrids

5.3.3.2 Balanced Hybrids

5.3.3.3 Splitters and Dividers

5.3.4 Circulators and Isolators

5.4 Resonators. 5.4.1 Resonator Responses on a Smith Chart

5.5 Antenna Measurements

5.6 Conclusions

References

Note

6 Measuring Amplifiers

6.1 Amplifiers as a Linear Devices

6.1.1 Pretesting an Amplifier

6.1.2 Optimizing VNA Settings for Calibration

6.1.3 Calibration for Amplifier Measurements

6.1.3.1 Source Power Calibrations

6.1.3.2 Receiver Power Calibrations

6.1.3.3 Advanced Techniques and Enhanced Power Calibration

6.1.3.4 S‐Parameter Calibrations for Amplifiers

6.1.4 Amplifier Measurements

6.1.4.1 S‐Parameters, Gain, and Return Loss, Input Power and Output Power

6.1.4.2 DC Measurements

6.1.4.3 Conclusions on Amplifier Measurements

6.1.5 Analysis of Amplifier Measurements

6.1.5.1 Stability Factors

6.1.5.2 Stability Circles

6.1.5.3 Mu Factors

6.1.5.4 Gain Factors

6.1.5.5 Analysis Conclusions

6.1.6 Saving Amplifier Measurement Results

6.1.6.1 CITI File

6.1.6.2 S2P or Touchstone® Files

6.1.6.3 CSV Files and Exporting Data to Excel

6.2 Gain Compression Measurements

6.2.1 Compression Definitions

6.2.1.1 Compression from Linear Gain

6.2.1.2 Compression from Max Gain

6.2.1.3 Compression from Back‐off or X‐Y Compression

6.2.1.4 Compression from Saturation

6.2.2 AM‐to‐PM or Phase Compression

6.2.3 Swept Frequency Gain and Phase Compression

6.2.4 Gain Compression Application, Smart Sweep, and Safe‐Sweep Mode

6.2.4.1 Safe Modes of Measuring Compression

6.2.4.2 Full 2‐D Gain and Compression Characterization

6.2.4.3 Calibration in Compression Measurements

6.2.4.4 DC Power Analysis

6.2.4.5 Error Correction and Compression

6.3 Measuring High‐Gain Amplifiers

6.3.1 Setup for High‐Gain Amplifiers

6.3.2 Calibration Considerations

6.4 Measuring High‐Power Amplifiers

6.4.1 Configurations for Generating High Drive Power. 6.4.1.1 Moderate Drive Levels (Less Than +30 dBm)

6.4.1.2 High Drive Levels (Greater Than +30 dBm)

6.4.2 Configurations for Receiving High‐Power

6.4.3 Power Calibration and Pre/Post Leveling

6.5 Making Pulsed‐RF Measurements

6.5.1 Wideband vs. Narrowband Measurements

6.5.1.1 Point‐in‐Pulse Measurements

6.5.2 Pulse Profile Measurements

6.5.3 Pulse‐to‐Pulse Measurements

6.5.4 DC Measurements for Pulsed RF Stimulus

6.5.4.1 Pulsed‐DC and Pulsed‐RF Measurements

6.6 Distortion Measurements

6.6.1 Harmonic Measurements on Amplifiers

6.7 Measuring Doherty Amplifiers

6.8 X‐Parameters, Load‐Pull Measurements, Active Loads, and Hot S‐Parameters

6.8.1 Non‐linear Responses and X‐Parameters

6.8.2 Load‐Pull, Source‐Pull, and Load Contours

6.8.2.1 Mechanical Load‐Pull Systems

6.8.2.2 Active Load‐Pull

6.8.2.3 Hybrid Load‐Pull Systems

6.8.2.4 Power Contours

6.8.2.5 Efficiency Contours

6.8.3 Hot S‐Parameters and True Hot‐S22

6.8.3.1 Evaluating the Spectrum of Traditional Hot‐S22

6.8.3.2 Computing True Hot‐S22

6.8.3.3 Computing Hot S‐Parameters

6.8.3.4 Examples of Hot S‐Parameters

6.8.3.5 Hot‐S22, Hot S‐Parameters, and System Performance

6.8.3.6 Limitations of Hot S‐Parameters

6.9 Conclusions on Amplifier Measurements

References

7 Mixer and Frequency Converter Measurements

7.1 Mixer Characteristics

7.1.1 Small Signal Model of Mixers

7.1.2 Reciprocity in Mixers

7.1.2.1 Notes on LO Phase Response

7.1.3 Scalar and Vector Responses

7.2 Mixers vs. Frequency Converters

7.2.1 Frequency Converter Design

7.2.2 Multiple Conversions and Spur Avoidance

7.3 Mixers as a 12‐Port Device

7.3.1 Mixer Conversion Terms. 7.3.1.1 IF to RF Conversion

7.3.1.2 Reflection and Re‐conversion

7.3.1.3 Image Enhancement

7.3.1.4 Conversion on the LO Port

7.4 Mixer Measurements: Frequency Response. 7.4.1 Introduction

7.4.2 Amplitude Response

7.4.2.1 Fixed LO Measurements

7.4.3 Phase Response

7.4.3.1 Down/Up‐Conversion

7.4.3.2 Parallel Path Using a Reference Mixer (Vector Mixer Characterization, VMC)

7.4.3.3 Phase‐Coherent Receivers

7.4.4 Group Delay and Modulation Methods

7.4.5 Swept LO Measurements

7.4.5.1 Phase Measurements for Swept LO: Beam Forming and Radar System Matching

7.4.5.2 Absolute Phase Measurements of Mixers

7.5 Calibration for Mixer Measurements

7.5.1 Calibrating for Power

7.5.1.1 Split‐Port Cal for Amplitude Response

7.5.2 Calibrating for Phase

7.5.2.1 Three‐Mixer Method

7.5.3 Determining the Phase and Delay of a Reciprocal Calibration Mixer

7.5.3.1 Reciprocal Cal Mixer Reflection Method

7.5.3.2 Reciprocal Cal Mixer Unknown Thru Method

7.5.3.3 Phase Reference Method

7.6 Mixers Measurements vs. Drive Power

7.6.1 Mixer Measurements vs. LO Drive. 7.6.1.1 Fixed Frequency Response to LO Drive

7.6.1.2 Swept Frequency Response to LO Drive

7.6.2 Mixer Measurements vs. RF Drive Level

7.6.2.1 Swept Frequency Measurements vs. RF Drive

7.6.2.2 Fixed‐Frequency Measurements vs. RF Drive

7.6.2.3 Automated Gain Compression Measurements on Mixers (GCX)

7.7 TOI and Mixers

7.7.1 IMD vs. LO Drive Power

7.7.2 IMD vs. RF Power

7.7.3 IMD vs. Frequency Response

7.8 Noise Figure in Mixers and Converters

7.9 Special Cases

7.9.1 Mixers with RF or LO Multipliers

7.9.2 Segmented Sweeps

7.9.3 Measuring Higher‐Order Products

7.9.3.1 Swept LO Group Delay

7.9.4 Mixers with an Embedded LO

7.9.5 High‐Gain and High‐Power Converters

7.10 I/Q Converters and Modulators

I/Q Figures of Merit

Measurements on I/Q Up‐Converters (I/Q Modulators)

Measuring I/Q Down‐Converters

7.11 Conclusions on Mixer Measurements

References

8 Spectrum Analysis: Distortion and Modulation Measurements

8.1 Spectrum Analysis in Vector Network Analyzers

8.1.1 Spectrum Analysis Fundamentals

8.1.1.1 Resolution Bandwidth Filters

8.1.1.2 Sweeping Speed vs. RBW

8.1.1.3 FFT Mode in Spectrum Analysis

8.1.2 SA Block Diagrams: Image Rejection: Hardware vs. Software. 8.1.2.1 Hardware Image Rejection

8.1.2.2 Software Image Rejection

8.1.2.3 IF Response

8.1.3 Attributes of Repetitive Signals and Spectrum Measurements

8.1.3.1 Understanding Modulated Waveforms

8.1.3.2 Complementary Composite Distribution Function (CCDF)

8.1.3.3 Generating Noise‐Like Signals

8.1.3.4 Effects of Sweep Time

8.1.3.5 VBW Effects

8.1.3.6 RBW Effects

8.1.3.7 The “Scales Fell from His Eyes” RBW < (1/T)

8.1.4 Coherent Spectrum Analysis

8.1.4.1 Attributes of Coherency

8.1.4.2 Coherent‐Time‐Averaging (Vector Averaging)

8.1.4.3 Coherent Image Rejection

8.1.4.4 Modulated Power Detection for Coherent Signals

8.1.5 Calibration of SA Results

8.1.6 Two‐Tone Measurements, IMD, and TOI Definition

8.1.6.1 Intercept Points: OIP3

8.1.7 Measurement Techniques for Two‐Tone TOI

8.1.8 Swept IMD

8.1.9 Optimizing Results

8.1.9.1 Source Optimization

8.1.9.2 Receiver Optimization

8.1.10 Error Correction

8.2 Distortion Measurement of Complex Modulated Signals

8.2.1 Adjacent Power Measurements

8.2.1.1 Adjacent Channel Power Ratio (ACPR)

8.2.1.2 Adjacent Channel Power and EVM

8.2.2 Noise Power Ratio (NPR) Measurements

8.2.2.1 Generating NPR Signals

8.2.2.2 NPR Measurement: Band Power

8.2.2.3 NPR Measurement: Band‐Power Density

8.2.3 NPR Signal Quality and Correction

8.2.3.1 NPR and Coherent Power Measurements

8.2.4 EVM Derived from Distortion Measurements

8.3 Measurements of Spurious Signals with VNA Spectrum Analyzer

8.3.1 Spurious at Predictable Frequencies. 8.3.1.1 Multistage Converter Example

8.3.1.2 Determining Spur Order

8.3.2 Multiport Mixer Spurious Measurements

8.3.3 Spurious Oscillations

8.4 Measurements of Pulsed Signals and Time‐Gated Spectrum Analysis

8.4.1 Understanding Pulsed Spectrum

8.4.2 Time‐Gated Spectrum Analysis

8.5 Summary

Reference

9 Measuring Noise Figure and Noise Power

9.1 Noise‐Figure Measurements for Amplifiers

9.1.1 Definition of Noise Figure

9.1.2 Noise‐Power Measurements

9.1.2.1 Noise Receiver Bandwidth

9.1.2.2 Understanding Jitter

9.1.3 Computing Noise Figure from Noise Powers. 9.1.3.1 Y‐Factor Correction and Noise Receiver Calibration

9.1.4 Computing DUT Noise Figure from Y‐Factor Measurements

9.1.5 Cold‐Source Methods

9.1.6 Noise Parameters

9.1.6.1 Noise Parameter Measurement Systems

9.1.7 Noise Parameter Measurement Results

9.1.8 Error Correction in Noise Figure Measurements

9.2 Active Antenna Noise‐Figure Measurements (G/T)

9.3 Noise Figure in Mixers and Converters

9.3.1 Y‐Factor Measurements on Mixers

9.3.2 Cold‐Source Measurements on Mixers

9.3.2.1 Low‐Gain Mixer NF Measurements

9.3.2.2 Excess LO Noise in Mixers

9.4 Other Noise‐Related Measurements. 9.4.1 Noise Power Measurements with a VNA Spectrum Analyzer

9.4.2 Noise‐Power Measurements

9.4.2.1 Traditional SA Considerations

9.4.2.2 VNA‐Based SA Considerations

9.4.3 Noise Figure Measurements Using Spectrum Analysis

9.4.4 Carrier‐to‐Noise Measurements

9.5 Uncertainty, Verification, and Improvement of Noise‐Figure Measurements. 9.5.1 Uncertainty of Noise‐Figure Measurements

9.5.2 Existing Methodologies

9.5.2.1 Improved Traceable Verification Devices for Noise Figure

9.5.3 Techniques for Improving Noise‐Figure Measurements. 9.5.3.1 Improving Y‐Factor Measurements

9.5.3.2 Improving Cold‐Source Measurements

9.6 Summary: Noise and Noise‐Figure Measurements

References

10 VNA Balanced Measurements. 10.1 Differential and Balanced S‐Parameters

10.2 3‐Port Balanced Devices

10.3 Measurement Examples for Mixed‐Mode Devices. 10.3.1 Passive Differential Devices: Balanced Transmission Lines

10.3.2 Differential Amplifier Measurements

10.3.3 Differential Amplifiers and Non‐linear Operation

10.4 True‐Mode VNA for Non‐linear Testing

10.4.1 True‐Mode Instruments

10.4.2 True‐Mode Measurements. 10.4.2.1 Measuring a Limiting Amplifier

10.4.2.2 Measuring a “Normal” Differential Amplifier

10.4.3 Determining the Phase Skew of a Differential Device

10.4.4 Differential Harmonic Measurements

10.5 Differential Testing Using Baluns, Hybrids, and Transformers

10.5.1 Transformers vs. Hybrids

10.5.2 Using Hybrids and Baluns with a 2‐Port VNA

10.6 Distortion Measurements of Differential Devices

10.6.1 Comparing Single‐Ended IMD Measurement to True‐Mode Measurements

10.6.2 Differential IMD without Baluns

10.7 Noise Figure Measurements on Differential Devices

10.7.1.1. Mixed‐Mode Noise Figure

10.7.2 Measurement Setup

10.8 Conclusions on Differential Device Measurement

References

11 Advanced Measurement Techniques

11.1 Creating Your Own Cal‐Kits

11.1.1 PC Board Example

11.1.2 Evaluating PC Board Fixtures

11.1.2.1 Characterizing the Thru Standard

11.1.2.2 Characterizing the 1‐Port Standards

11.1.2.3 Investigating the Load Standard

11.1.2.4 Open/Short Characterization and Modeling

11.1.2.5 Creating Cal‐Kit Models

11.1.2.6 Database Standards

11.1.2.7 Measurement Results with a PC Board Cal‐Kit

11.1.2.8 Conclusions on PC Board Fixtures

11.2 Fixturing and De‐embedding

11.2.1 De‐embedding Mathematics

11.3 Determining S‐Parameters for Fixtures

11.3.1 Fixture Characterization Using 1‐Port Calibrations

11.3.1.1 Computing the Square Root of a Complex Frequency Response

11.3.1.2 Port Extensions

11.3.1.3 Determining Port Extensions Values

11.4 Automatic Port Extensions (APE)

11.5 AFR: Fixture Removal Using Time Domain

11.5.1 2‐Port AFR

11.5.1.1 AFR Measurement Example

11.5.2 Fixture‐Enhanced AFR

11.5.3 1‐Port AFR

11.6 Embedding Port‐Matching Elements

11.7 Impedance Transformations

11.8 De‐embedding High‐Loss Devices

11.9 Understanding System Stability

11.9.1 Determining Cable Transmission Stability

11.9.2 Determining Cable Mismatch Stability

11.9.3 Reflection Tracking Stability

11.10 Some Final Comments on Advanced Techniques and Measurements

References

Appendix A Physical Constants

Appendix B Common RF and Microwave Connectors

Appendix C Common Waveguides

Appendix D Some Definitions for Calibration Kit Opens and Shorts

Appendix E Frequency, Wavelength, and Period

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Second Edition

Joel P. Dunsmore

.....

Apparent in the figure is also the ACLR level, which is nearly the same at the edge of the main signal as the NPR signal in the middle. It is clear from this figure that ACP and NPR are closely related. Imagine, though, if the DUT is followed by a sharp channelizing filter; the ACLR would be removed by the filter and could not be used to determine the distortion but the NPR signal allows one to see the in‐channel distortion. NPR measurements are covered extensively in Chapter 8.

Error vector magnitude (EVM) is a figure of merit used in communications systems to describe the quality of a modulated signal compared to an idealized signal. In most cases, it is a measure in the so‐called IQ plane of the vector difference between the measured signal and the idealized signal, which is determined by recovering the modulation pattern from the measured signal and re‐creating the idealized signal. It is used when the errors are small and becomes inaccurate with large errors as the recovered signal may not be the correct signal when the EVM is quite large.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Handbook of Microwave Component Measurements
Подняться наверх