The Chemistry of Environmental Engineering

The Chemistry of Environmental Engineering
Автор книги: id книги: 1887690     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 19609,3 руб.     (213,66$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Химия Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119707837 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

The focus of this book is the chemistry of environmental engineering and its applications, with a special emphasis on the use of polymers in this field. It explores the creation and use of polymers with special properties such as viscoelasticity and interpenetrating networks; examples of which include the creation of polymer-modified asphalt as well as polymers with bacterial adhesion properties. The text contains the issues of polymerization methods, recycling methods, wastewater treatment, types of contaminants, such as microplastics, organic dyes, and pharmaceutical residues. After a detailed overview of polymers in Chapter 1, their special properties are discussed in the following chapter. Among the topics is the importance of polymers to water purification procedures, since their use in the formation of reverse osmosis membranes do not show biofouling. Chapter 3 details special processing methods, such as atom transfer radical polymerization, enzymatic polymerization, plasma treatment, and several other methods, can be used to meet the urgent demands of industrial applications. Chapter 4 addresses the important environmental issue of recycling methods as they relate to several types of materials such as PET bottles, tire rubbers, asphalt compositions, and other engineering resins. And wastewater treatment is detailed in Chapter 5, in which the types of contaminants, such as microplastics, organic dyes and pharmaceutical residues, are described and special methods for their proper removal are detailed along with types of adsorbents, including biosorbents. Still another important issue for environmental engineering chemistry is pesticides. Chapter 6 is a thorough description of the development and fabrication of special sensors for the detection of certain pesticides. A detailed presentation of the electrical uses of polymer-based composites is given in Chapter 7, which include photovoltaic materials, solar cells, energy storage and dielectric applications, light-emitting polymers, and fast-charging batteries. And recent issues relating to food engineering, such as food ingredient tracing, protein engineering, biosensors and electronic tongues, are presented in Chapter 8. Finally, polymers used for medical applications are described in Chapter 9. These applications include drug delivery, tissue engineering, porous coatings and also the special methods used to fabricate such materials.

Оглавление

Johannes Karl Fink. The Chemistry of Environmental Engineering

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

The Chemistry of Environmental Engineering. Materials, Processing and Applications

Preface. Preface

How to Use This Book

Index

Acknowledgements

1 Special Polymers

1.1 Poly(ethylene)

1.1.1 Metallocene Poly(ethylene)

1.1.1.1 Film Applications

1.1.1.2 Brominated Poly(ethylene)

1.1.1.3 Comb-Shaped Materials

1.1.1.4 Shape Memory Polymers

1.1.1.5 Poly(ethylene)/Carbon Nanotube Nanocomposites

1.1.1.6 Antibacterial Coatings

1.1.2 Geomembranes

1.2 Poly(styrene)

1.2.1 Syndiotactic Poly(styrene)

1.2.1.1 Amino-containing Polymers

1.2.1.2 Styrene Ethylene Copolymers

1.2.1.3 Styrene Terpene Copolymers

1.2.1.4 Thermal Conductivity

1.3 Poly(ethylene terephthalate) 1.3.1 Blends of Poly(ethylene terephthalate) and Poly(phenylene sulfide)

1.4 Silicones. 1.4.1 Silicon Nanocrystals and Silicon-Polymer Hybrids

1.4.1.1 Humidity Sensor

1.4.2 Surfactants

1.4.2.1 Anionic Silicone Surfactants

1.4.2.2 Lubricating Substances

1.4.2.3 Gemini Surfactants

1.4.2.4 Textile Washing

1.4.2.5 Metal Extraction

1.4.2.6 Smithsonite Flotation

1.4.2.7 Methane Hydrate Formation

1.4.2.8 Foams

1.5 Self-healing Polymers

1.5.1 Multiphasic Copolymer

1.5.2 Hydrophobic Coatings

1.5.3 Microcapsule Based Self-Healing

1.5.4 Tunable Mechanical Strengths

1.5.5 Bioinspired Pathways. 1.5.5.1 Leaf-Inspired Polymers

1.5.5.2 Imidazole-Metal Coordination

1.6 Fibers and Smart Polymers. 1.6.1 Natural Fiber Reinforced Polymer Composites

1.6.2 Shape Memory Systems

1.6.3 Smart Polymers

1.7 Porous Materials. 1.7.1 Preparation Methods. 1.7.1.1 Emulsion Templating

1.7.1.2 Continuous Extrusion Foaming

1.7.1.3 Steam-Chest Molding

1.7.1.4 High-Pressure Foam Injection Molding

1.7.1.5 Cationic Step-Growth Polymerization

1.7.2 Polymer Foams

1.7.2.1 Macroporous Polymers

1.7.2.2 Nanocellular Polymer Foam

1.7.2.3 Sound Absorption

1.7.2.4 Poly(urethane) Foam from Recycling

1.7.3 Porous Polymer Monoliths

1.7.4 Concrete. 1.7.4.1 Fibrous Light Weight Concrete

1.7.4.2 Porous Concrete

1.7.4.3 Test Methods

References

2 Special Properties of Polymers

2.1 Viscoelasticity

2.2 Impact response of Hybrid Carbon/Glass Fiber Reinforced Polymer Composites

2.3 Mechanical Properties. 2.3.1 Real Elastic Network Theory

2.3.2 Interpenetrating Polymer Network Hydrogels

2.3.3 Flax Fabric Reinforced Polymer

2.3.4 Asphalt

2.3.4.1 Polymer Modified Asphalt

2.3.4.2 Performance Testing

2.4 Bacterial Adhesion

2.4.1 Influence of Stiffness. 2.4.1.1 Poly(ethylene glycol)

2.4.1.2 Poly(dimethyl siloxane)

2.4.2 Bioactive Sulfone Polymers. 2.4.2.1 Addition Copolymers

2.4.2.2 Sulfone Polymer Colloid

2.4.2.3 Organic Carbon Oxidation

2.4.3 Functionalized Dopamine

2.4.4 Sub-micrometer Structures

2.4.5 Mechanically Modulated Microgel Coatings

2.4.6 Conductive Polymers

2.4.7 Reverse Osmosis Membranes

2.4.7.1 Layer-by-Layer Fabrication

2.4.7.2 Atom Transfer Radical Polymerization

2.4.7.3 Chitooligosaccharide

2.4.7.4 In-Situ Modification

2.4.7.5 Polyampholyte Modification

2.4.7.6 Skin Layers

2.4.7.7 Thin Film Composites

2.4.7.8 Codeposition Strategy

References

3 Processing Methods. 3.1 Radiation Processing

3.2 Additive Manufacturing

3.3 Atom Transfer Radical Polymerization

3.3.1 Vinyl Macromonomers of Poly(styrene)

3.3.2 Ultrasound Atom Transfer Radical Polymerization

3.3.3 Near-Infrared Sensitized Photoinduced Atom-Transfer Radical Polymerization

3.4 Reversible Addition-Fragmentation Chain Transfer Polymerization

3.5 Enzymatic Polymerization

3.6 Surface Patterning

3.6.1 Nonthermal Plasma Technology

3.7 Friction Welding

3.7.1 ABS and Poly(amide)s

3.7.1.1 Compatibility due to MFI

3.8 Interfacial Engineering

3.9 Plasma Treatment

3.9.1 Mineralization of Plasma Treated Polymer Surfaces

3.9.2 Wetting Properties. 3.9.2.1 Durable Superhydrophobic Surfaces

3.9.2.2 Reversible Switching of Wetting Properties

3.9.3 Vapor Phase Graft Polymerization

3.9.4 Effect of Plasma Treatment Frequency

3.9.5 Plasma Treatment in Textile Industry

3.9.6 Antimicrobial Surfaces

3.9.7 Non-Thermal Plasma Treatment of Agricultural Seeds

3.9.8 Special Materials. 3.9.8.1 Poly(ethylene)

3.9.8.2 Poly(methylmethacrylate)

3.9.8.3 Poly(ethylene terephthalate)

3.9.8.4 Poly(lactic acid)

References

4 Recycling. 4.1 Recycling Methods

4.1.1 Primary Recycling

4.1.2 Secondary Recycling

4.1.3 Tertiary Recycling

4.1.4 Quaternary Recycling

4.1.5 Melt Filtration

4.1.6 Hydrothermal Recycling. 4.1.6.1 Low Quality Biopolymer and Plastic Waste

4.1.6.2 Electronic Waste Plastics

4.1.7 Quality of Postconsumer Plastics

4.2 Materials. 4.2.1 Poly(propylene) Waste

4.2.2 PET Bottles

4.2.2.1 Chemical Recycling

4.2.2.2 Transformation into Aerogels

4.2.3 Engineering Epoxy Resin

4.2.4 Carbon Nanotube-Filled Polycarbonate

4.2.5 Asphalt Compositions. 4.2.5.1 Cold Recycling

4.2.5.2 Recycled Asphalt Pavement

4.2.5.3 Recycled Plastics in Eco-efficient Asphalt Concrete

4.2.6 Tire Rubbers

References

5 Wastewater Treatment

5.1 Properties and Contaminants

5.1.1 Microplastics

5.1.2 Organic Dyes

5.1.3 Pharmaceutical Residues in Wastewater

5.1.4 Passively Aerated Biological Filter

5.2 Adsorbents

5.2.1 Activated Carbon

5.2.1.1 Activated Carbon from Biowaste

5.2.1.2 Adsorption of Phenol

5.2.1.3 Removal of Acetaminophen

5.2.2 Adsorbent Regeneration

5.2.3 Ultrasound-assisted treatment

5.2.4 Praseodymium Molybdate

5.2.5 Biosorbents

References

6 Pesticides. 6.1 Pesticide Carriers

6.2 PCL Nanocapsules

6.3 Self-Decontamination Mechanisms

6.4 Controlled Release of Pesticides

6.4.1 PVA-Starch Composite Films

6.4.2 PLA Nanofibers

6.4.3 PBSU and PLA Nanofibers

6.4.4 Poly(3-hydroxybutyrate)

6.5 Sensors. 6.5.1 Biosensor for Dichlorvos

6.5.2 Biosensor for Carbaryl

6.5.3 Voltammetric Method for Ethyl Paraoxon

6.5.4 Nitrogen Doped Graphene Electrode

6.5.5 Molecularly Imprinted Sensor

6.5.6 Ecotoxicity Evaluation

References

7 Electrical Uses

7.1 Photovoltaic Materials

7.2 Solar Cells

7.3 Energy Storage and Dielectric Applications

7.3.1 Polymer Nanocomposites

7.3.2 Multiwall Carbon Nanotubes

7.3.3 High-Temperature Dielectric Materials

7.4 Light Emitting Polymers

7.4.1 Circularly Polarized Light

7.4.2 Polymer Types. 7.4.2.1 Conjugated Polymers

7.4.2.2 Alcohol Soluble Conjugated Polymer

7.4.2.3 Push-coating of Nanostructured Polymers

7.4.3 Color Management

7.4.3.1 White Light Emitting Polymers

7.4.3.2 Blue Light Emitting Polymers

7.4.3.3 Red Light Emitting Polymers

7.4.4 Light-Emitting Electrochemical Cells

7.4.4.1 Electrode Materials

7.4.4.2 Electrolytes

7.5 Fast Charging Batteries

7.5.1 Charging Stages

7.5.2 Increasing the Cycling Lifetime

7.5.3 Lithium-Ion Batteries

7.6 Electrical Power Cable Engineering

7.6.1 Carbon Nanotube Cables

7.6.2 High Voltage Alternating Current Cables for Subsea Transmission. 7.6.2.1 Methods of Characterization

7.6.2.2 Modular Stacked Direct Current Architecture

7.6.3 Biodegradable Polymer Cables

References

8 Food Engineering

8.1 Software

8.1.1 GUI Software Packages

8.1.2 Food Ingredient Tracing

8.1.3 Microbial Growth

8.2 Materials. 8.2.1 Microbial Biopolymers

8.2.2 Marine Polysaccharides

8.3 Protein Engineering

8.4 Instrumentation and Sensors

8.4.1 Biosensors

8.4.2 Electronic Tongues

8.4.3 Microwave Methods

8.4.4 Optoelectronic Sensor

8.4.5 Digital Image Analysis

8.5 Ultrasonic Methods

8.5.1 Special Applications

8.5.2 Composition of Meat

8.5.3 Flour Quality

8.5.4 Porosity of Bread

8.5.5 Dairy Products

References

9 Medical Uses. 9.1 Drug Delivery

9.2 Porous Bioresorbable Polymers

9.3 Tissue Engineering

9.3.1 Biomedical Materials

9.3.1.1 Materials for Bone Grafting

9.3.1.2 Extracellular Matrix Coating

9.3.2 Electrically Conducting Polymer

9.3.3 Bioactive Glass

9.3.3.1 Composite Materials

9.3.3.2 Bioactive Glass Porous Coatings

9.3.4 Glass-based Coatings

9.3.4.1 Sol-gel Route

9.3.4.2 Aerosol Deposition

9.3.4.3 Solution Precursor Plasma Spraying

9.3.5 Hard Tissue Implants. 9.3.5.1 Electrochemical Methods for Fabrication

9.3.6 Membranes

9.3.7 Textile-based Technologies

9.3.8 Improvement of Cell Adhesion

9.3.9 Solvent Free Fabrication

9.3.10 Stereolithographic 3D Printing

9.3.11 Extrusion-Based 3D Printing

References

Index. Acronyms

Chemicals

General Index

Also of Interest

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Scrivener Publishing

.....

The text focuses mainly on the literature of the past decade. Beyond education, this book will serve the needs of industry engineers and specialists who have only a passing contact with the plastics and composites industries but need to know more.

Utmost care has been taken to present reliable data. Because of the vast variety of material presented here, however, the text cannot be complete in all aspects, and it is recommended that the reader study the original literature for more complete information.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу The Chemistry of Environmental Engineering
Подняться наверх