Photovoltaic Module Reliability

Photovoltaic Module Reliability
Автор книги: id книги: 1887494     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 13781,1 руб.     (135,62$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Физика Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119459026 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Provides practical guidance on the latest quality assurance and accelerated stress test methods for improved long-term performance prediction of PV modules This book has been written from a historical perspective to guide readers through how the PV industry learned what the failure and degradation modes of PV modules were, how accelerated tests were developed to cause the same failures and degradations in the laboratory, and then how these tests were used as tools to guide the design and fabrication of reliable and long-life modules. Photovoltaic Module Reliability starts with a brief history of photovoltaics, discussing some of the different types of materials and devices used for commercial solar cells. It then goes on to offer chapters on: Module Failure Modes; Development of Accelerated Stress Tests; Qualification Testing; and Failure Analysis Tools. Next, it examines the use of quality management systems to manufacture PV modules. Subsequent chapters cover the PVQAT Effort; the Conformity Assessment and IECRE; and Predicting PV Module Service Life. The book finishes with a look at what the future holds for PV. A comprehensive treatment of current photovoltaic (PV) technology reliability and necessary improvement to become a significant part of the electric utility supply system Well documented with experimental and practical cases throughout, enhancing relevance to both scientific community and industry Timely contribution to the harmonization of methodological aspects of PV reliability evaluation with test procedures implemented to certify PV module quality Written by a leading international authority in PV module reliability Photovoltaic Module Reliability is an excellent book for anyone interested in PV module reliability, including those working directly on PV module and system reliability and preparing to purchase modules for deployment.

Оглавление

John H. Wohlgemuth. Photovoltaic Module Reliability

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Photovoltaic Module Reliability

Acknowledgments

1 Introduction

1.1 Brief History of PVs

1.2 Types of PV Cells

1.3 Module Packaging – Purpose and Types

1.4 What Does Reliability Mean for PV Modules?

1.5 Preview of the Book

References

2 Module Failure Modes

2.1 Broken Interconnects

2.2 Broken/Cracked Cells and Snail Trails

2.3 Delamination

2.4 Corrosion of Cell Metallization

2.5 Encapsulant Discoloration

2.6 Failure of Electrical Bonds Particularly Solder Bonds

2.7 Glass Breakage

2.8 Junction Box Problems

2.9 Loss of Elastomeric Properties of Back Sheets

2.10 Reverse Bias Hot Spots

2.11 By‐Pass Diodes

2.12 Structural Failures

2.13 Ground Faults and Open Circuits Leading to Arcing

2.14 Potential Induced Degradation

2.15 Thin‐Film Specific Defects

2.15.1 Light‐Induced Degradation

2.15.2 Inadequate Edge Deletion

2.15.3 Shunts at Laser Scribes and Impurities in Thin Film

2.15.4 Failure of Edge Seals

References

3 Development of Accelerated Stress Tests

3.1 Thermal Cycling or Change in Temperature

3.2 Damp Heat

3.3 Humidity Freeze

3.4 Ultraviolet (UV) Light Exposure

3.5 Static Mechanical Load

3.6 Cyclic (Dynamic) Mechanical Load

3.7 Reverse Bias Hot Spot Test

3.8 Bypass Diode Thermal Test

3.9 Hail Test

References

4 Qualification Testing

4.1 JPL Block Buy Program

4.2 Evolution of IEC 61215 Qualification Test Sequence

4.3 IEC 61215 Test Protocol

4.3.1 MQT 01 – Visual Inspection

4.3.2 MQT 02 – Maximum Power Determination

4.3.3 MQT 03 – Insulation Test

4.3.4 MQT 04 – Measurement of Temperature Coefficients

4.3.5 MQT 05 – Measurement of NMOT

4.3.6 MQT 06 – Performance at STC and NMOT

4.3.7 MQT 07 – Performance at Low Irradiance

4.3.8 MQT 08 – Outdoor Exposure Test

4.3.9 MQT 09 – Hot Spot Endurance Test

4.3.10 MQT 10 – UV Preconditioning Test

4.3.11 MQT 11 – Thermal Cycling Test

4.3.12 MQT 12 – Humidity‐Freeze Test

4.3.13 MQT 13 – Damp‐Heat Test

4.3.14 MQT 14 – Robustness of Termination

4.3.15 MQT 15 – Wet Leakage Current Test

4.3.16 MQT 16 – Static Mechanical Load Test

4.3.17 MQT 17 – Hail Test

4.3.18 MQT 18 – Bypass Diode Test

4.3.19 MQT 19 – Stabilization

4.4 How Qualification Tests have been Critical to Improving the Reliability and Durability of PV Modules

4.5 Limitations of the Qualification Tests

4.6 PV Module Safety Certification

4.6.1 Construction Requirements: IEC 61730‐1

4.6.1.1 Components

4.6.1.2 Mechanical and Electromechanical Connections

4.6.1.3 Materials

4.6.1.3.1 Polymeric Materials

4.6.1.3.2 Metallic Materials

4.6.1.4 Protection Against Electric Shock

4.6.2 Requirements of Testing IEC 61730‐2

4.6.2.1 MST 01 – Visual Inspection

4.6.2.2 MST 02 – Performance at STC

4.6.2.3 MST 03 – Maximum Power Determination

4.6.2.4 MST 04 – Insulation Thickness Test

4.6.2.5 MST 05 – Durability of Markings Test

4.6.2.6 MST 06 – Sharp Edge Test

4.6.2.7 MST 07 – Bypass Diode Functionality Test

4.6.2.8 MST 11 – Accessibility Test

4.6.2.9 MST 12 – Cut Susceptibility Test

4.6.2.10 MST 13 – Continuity Test of Equipotential Bonding

4.6.2.11 MST 14 – Impulse Voltage Test

4.6.2.12 MST 16 – Insulation Test

4.6.2.13 MST 17 – Wet Leakage Current Test

4.6.2.14 MST 21 – Temperature Test

4.6.2.15 MST 22 – Hot Spot Endurance Test

4.6.2.16 MST 24 – Ignitability Test

4.6.2.17 MST 25 – Bypass Diode Thermal Test

4.6.2.18 MST 26 – Reverse Current Overload Test

4.6.2.19 MST 32 – Mechanical Breakage Test

4.6.2.20 MST 33 – Screw Connections Test – Test for General Screw Connections MST 33a

4.6.2.21 MST 33 – Screw Connections Test – Test for Locking Screws MST 33b

4.6.2.22 MST 34 – Static Mechanical Load Test

4.6.2.23 MST 35 – Peel Test

4.6.2.24 MST 36 – Lap Shear Strength Test

4.6.2.25 MST 37 – Materials Creep Test

4.6.2.26 MST 42 – Robustness of Termination Test

4.6.2.27 MST 51 – Thermal Cycling Test

4.6.2.28 MST 52 – Humidity Freeze Test

4.6.2.29 MST 53 – Damp Heat Test

4.6.2.30 MST 54 – UV Test

4.6.2.31 MST 55 – Cold Conditioning

4.6.2.32 MST 56 – Dry Heat Conditioning

4.6.2.33 Recommendations for Testing of PV Modules from Production

References

5 Failure Analysis Tools

5.1 PV Performance – Analysis of Light I–V Curves

5.2 Performance as a Function of Irradiance

5.3 Dark I–V Curves

5.4 Visual Inspection

5.5 Infrared (IR) Inspection

5.6 Electroluminescence (EL)

5.7 Adhesion of Layers, Boxes, Frames, etc

References

6 Using Quality Management Systems to Manufacture PV Modules

6.1 Quality Management Systems

6.2 Using ISO 9000 and IEC 61215

6.3 Why just Using IEC 61215 and ISO 9000 is No Longer Considered Adequate?

6.4 Customer Defined “Do It Yourself” Quality Management and Qualification Systems (IEC 61215 on Steroids)

6.5 Problems with the “Do It Yourself” System

References

7 The PVQAT Effort

7.1 Task Group 1: PV QA Guidelines for Module Manufacturing

7.2 Task Group 2: Testing for Thermal and Mechanical Fatigue

7.3 Task Group 3: Testing for Humidity, Temperature and Voltage

7.3.1 Corrosion

7.3.2 Delamination

7.3.3 PID

7.3.4 Delamination Due to Voltage Stress

7.4 Task Group 4: Testing for Diodes, Shading and Reverse Bias

7.5 Task Group 5: Testing for UV, Temperature and Humidity

7.6 Task Group 6: Communications of Rating Information

7.7 Task Group 7: Testing for Snow and Wind Load

7.8 Task Group 8: Testing for Thin‐Film Modules

7.9 Task Group 9: Testing for Concentrator Photovoltaic (CPV)

7.10 Task Group 10: Testing for Connectors

7.11 Task Group 11: QA for PV Systems

7.12 Task Group 12: Soiling and Dust

7.13 Task Group 13: Cells

References

8 Conformity Assessment and IECRE

8.1 Module Conformity Assessment – PowerMark, IECQ, PVGAP, and IECEE

8.1.1 PV‐1: “Criteria for a Model Quality System for Laboratories Engaged in Testing PV Modules”

8.1.2 PV‐2: Model for a Third‐Party Certification and Labeling Program for PV Modules

8.1.3 PV‐3: Testing Requirements for a Certification and Labeling Program for PV Modules

8.1.4 PV‐4: Operational Procedures Manual for the Certification Body of the PV Module Certification Program

8.1.5 PV‐5: Application and Certification Procedures for the PV Module Certification Program

8.2 IECRE – Conformity Assessment for PV Systems

References

9 Predicting PV Module Service Life

9.1 Determining Acceleration Factors

9.1.1 Thermal Cycling

9.1.2 Discoloration of the Encapsulant

9.1.3 PET Hydrolysis

9.2 Impact of Design and Manufacturing on Failure or Degradation Rates for PV Modules

9.3 Impact of Location and Type of Mounting on Failure or Degradation Rates for PV Modules

9.4 Extended Stress Testing of PV Modules

9.5 Setting Up a True Service Life Prediction Program

References

10 What does the Future Hold for PV and a Brief Summary

10.1 Current Work on Updating Standards

10.1.1 Second Edition of IEC 61215 Series

10.1.2 Amendment 1 to Second Edition of IEC 61730‐1 and IEC 61730‐1

10.1.3 IEC TS 63126 – Guidelines for Qualifying PV Modules, Components and Materials for Operation at High Temperatures

10.2 Looking to the Future

10.2.1 Degradation Rates

10.2.2 Module Lifetime

10.3 Brief Summary

10.3.1 Personal Reflections

References

Index. a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

John H. Wohlgemuth

.....

Thin film cells are deposited onto a foreign substrate. These substrates can be glass where the cells are deposited right side up or upside down depending on the technology of the particular thin film material being used. Figures 1.4a and 1.4b show the cross section of these two types of module constructions. In Figure 1.4a, the thin film is deposited on the backside of the front glass. This is typical of how CdTe and a‐Si modules are fabricated. Figure 1.4a has been drawn with edge seals as this is typically how CdTe modules are fabricated today. The edge seals are designed to keep moisture from reaching the active cell area for the lifetime of the product (typically warrantied by the manufacturer for 25 years). In Figure 1.4b, the thin film is deposited on the front side of the back glass. This is typical of how CIS and CIGS modules are fabricated. Figure 1.4b has also been drawn with edge seals, but edge seals are not as prevalent in these types of modules. In this case, the superstrate can also be made of glass though other materials are often used.

Figure 1.3a Cross‐sectional drawing of glass/encapsulant/cry‐Si cells/encapsulant/backsheet module.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Photovoltaic Module Reliability
Подняться наверх