Spatial Analysis

Spatial Analysis
Автор книги: id книги: 2362217     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 8302,56 руб.     (81,71$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Математика Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781118763575 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

SPATIAL ANALYSIS Explore the foundations and latest developments in spatial statistical analysis In Spatial Analysis, two distinguished authors deliver a practical and insightful exploration of the statistical investigation of the interdependence of random variables as a function of their spatial proximity. The book expertly blends theory and application, offering numerous worked examples and exercises at the end of each chapter. Increasingly relevant to fields as diverse as epidemiology, geography, geology, image analysis, and machine learning, spatial statistics is becoming more important to a wide range of specialists and professionals. The book includes: Thorough introduction to stationary random fields, intrinsic and generalized random fields, and stochastic models Comprehensive exploration of the estimation of spatial structure Practical discussion of kriging and the spatial linear model Spatial Analysis is an invaluable resource for advanced undergraduate and postgraduate students in statistics, data science, digital imaging, geostatistics, and agriculture. It’s also an accessible reference for professionals who are required to use spatial models in their work.

Оглавление

Kanti V. Mardia. Spatial Analysis

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Spatial Analysis

List of Figures

List of Tables

Preface

List of Notation and Terminology

1 Introduction. 1.1 Spatial Analysis

1.2 Presentation of the Data

1.3 Objectives

1.4 The Covariance Function and Semivariogram

1.4.1 General Properties

1.4.2 Regularly Spaced Data

1.4.3 Irregularly Spaced Data

1.5 Behavior of the Sample Semivariogram

1.6 Some Special Features of Spatial Analysis

Exercises

2 Stationary Random Fields. 2.1 Introduction

2.2 Second Moment Properties

2.3 Positive Definiteness and the Spectral Representation

2.4 Isotropic Stationary Random Fields

2.5 Construction of Stationary Covariance Functions

2.6 Matérn Scheme

2.7 Other Examples of Isotropic Stationary Covariance Functions

2.8 Construction of Nonstationary Random Fields

2.8.1 Random Drift

2.8.2 Conditioning

2.9 Smoothness

2.10 Regularization

2.11 Lattice Random Fields

2.12 Torus Models

2.12.1 Models on the Continuous Torus

2.12.2 Models on the Lattice Torus

2.13 Long‐range Correlation

2.14 Simulation. 2.14.1 General Points

2.14.2 The Direct Approach

2.14.3 Spectral Methods

2.14.4 Circulant Methods

Exercises

3 Intrinsic and Generalized Random Fields. 3.1 Introduction

3.2 Intrinsic Random Fields of Order

3.3 Characterizations of Semivariograms

3.4 Higher Order Intrinsic Random Fields

3.5 Registration of Higher Order Intrinsic Random Fields

3.6 Generalized Random Fields

3.7 Generalized Intrinsic Random Fields of Intrinsic Order

3.8 Spectral Theory for Intrinsic and Generalized Processes

3.9 Regularization for Intrinsic and Generalized Processes

3.10 Self‐Similarity

3.11 Simulation

3.11.1 General Points

3.11.2 The Direct Method

3.11.3 Spectral Methods

3.12 Dispersion Variance

Exercises

4 Autoregression and Related Models. 4.1 Introduction

4.2 Background

4.3 Moving Averages

4.3.1 Lattice Case

4.3.2 Continuously Indexed Case

4.4 Finite Symmetric Neighborhoods of the Origin in

4.5 Simultaneous Autoregressions (SARs) 4.5.1 Lattice Case

4.5.2 Continuously Indexed Random Fields

4.6 Conditional Autoregressions (CARs)

4.6.1 Stationary CARs

4.6.2 Iterated SARs and CARs

4.6.3 Intrinsic CARs

4.6.4 CARs on a Lattice Torus

4.6.5 Finite Regions

4.7 Limits of CAR Models Under Fine Lattice Spacing

4.8 Unilateral Autoregressions for Lattice Random Fields

4.8.1 Half‐spaces in

4.8.2 Unilateral Models

4.8.3 Quadrant Autoregressions

4.9 Markov Random Fields (MRFs) 4.9.1 The Spatial Markov Property

4.9.2 The Subset Expansion of the Negative Potential Function

4.9.3 Characterization of Markov Random Fields in Terms of Cliques

4.9.4 Auto‐models

4.10 Markov Mesh Models

4.10.1 Validity

4.10.2 Marginalization

4.10.3 Markov Random Fields

4.10.4 Usefulness

Exercises

5 Estimation of Spatial Structure. 5.1 Introduction

5.2 Patterns of Behavior

5.2.1 One‐dimensional Case

5.2.2 Two‐dimensional Case

5.2.3 Nugget Effect

5.3 Preliminaries

5.3.1 Domain of the Spatial Process

5.3.2 Model Specification

5.3.3 Spacing of Data

5.4 Exploratory and Graphical Methods

5.5 Maximum Likelihood for Stationary Models

5.5.1 Maximum Likelihood Estimates – Known Mean

5.5.2 Maximum Likelihood Estimates – Unknown Mean

5.5.3 Fisher Information Matrix and Outfill Asymptotics

5.6 Parameterization Issues for the Matérn Scheme

5.7 Maximum Likelihood Examples for Stationary Models

5.8 Restricted Maximum Likelihood (REML)

5.9 Vecchia's Composite Likelihood

5.10 REML Revisited with Composite Likelihood

5.11 Spatial Linear Model

5.11.1 MLEs

5.11.2 Outfill Asymptotics for the Spatial Linear Model

5.12 REML for the Spatial Linear Model

5.13 Intrinsic Random Fields

5.14 Infill Asymptotics and Fractal Dimension

Exercises

6 Estimation for Lattice Models

6.1 Introduction

6.2 Sample Moments

6.3 The AR(1) Process on

6.4 Moment Methods for Lattice Data

6.4.1 Moment Methods for Unilateral Autoregressions (UARs)

6.4.2 Moment Estimators for Conditional Autoregression (CAR) Models

6.5 Approximate Likelihoods for Lattice Data

6.6 Accuracy of the Maximum Likelihood Estimator

6.7 The Moment Estimator for a CAR Model

Exercises

7 Kriging. 7.1 Introduction

7.2 The Prediction Problem

7.3 Simple Kriging

7.4 Ordinary Kriging

7.5 Universal Kriging

7.6 Further Details for the Universal Kriging Predictor

7.6.1 Transfer Matrices

7.6.2 Projection Representation of the Transfer Matrices

7.6.3 Second Derivation of the Universal Kriging Predictor

7.6.4 A Bordered Matrix Equation for the Transfer Matrices

7.6.5 The Augmented Matrix Representation of the Universal Kriging Predictor

7.6.6 Summary

7.7 Stationary Examples

7.8 Intrinsic Random Fields. 7.8.1 Formulas for the Kriging Predictor and Kriging Variance

7.8.2 Conditionally Positive Definite Matrices

7.9 Intrinsic Examples

7.10 Square Example

7.11 Kriging with Derivative Information

7.12 Bayesian Kriging. 7.12.1 Overview

7.12.2 Details for Simple Bayesian Kriging

7.12.3 Details for Bayesian Kriging with Drift

7.13 Kriging and Machine Learning

7.14 The Link Between Kriging and Splines

7.14.1 Nonparametric Regression

7.14.2 Interpolating Splines

7.14.3 Comments on Interpolating Splines

7.14.4 Smoothing Splines

7.15 Reproducing Kernel Hilbert Spaces

7.16 Deformations

Exercises

8 Additional Topics. 8.1 Introduction

8.2 Log‐normal Random Fields

8.3 Generalized Linear Spatial Mixed Models (GLSMMs)

8.4 Bayesian Hierarchical Modeling and Inference

8.5 Co‐kriging

8.6 Spatial–temporal Models. 8.6.1 General Considerations

8.6.2 Examples

8.7 Clamped Plate Splines

8.8 Gaussian Markov Random Field Approximations

8.9 Designing a Monitoring Network

Exercises

Appendix A Mathematical Background

A.1 Domains for Sequences and Functions

A.2 Classes of Sequences and Functions

A.2.1 Functions on the Domain

A.2.2 Sequences on the Domain

A.2.3 Classes of Functions on the Domain

A.2.4 Classes of Sequences on the Domain , Where

A.3 Matrix Algebra

A.3.1 The Spectral Decomposition Theorem

A.3.2 Moore–Penrose Generalized Inverse

A.3.3 Orthogonal Projection Matrices

A.3.4 Partitioned Matrices

A.3.5 Schur Product

A.3.6 Woodbury Formula for a Matrix Inverse

A.3.7 Quadratic Forms

A.3.8 Toeplitz and Circulant Matrices

A.3.9 Tensor Product Matrices

A.3.10 The Spectral Decomposition and Tensor Products

A.3.11 Matrix Derivatives

A.4 Fourier Transforms

A.5 Properties of the Fourier Transform

A.6 Generalizations of the Fourier Transform

A.7 Discrete Fourier Transform and Matrix Algebra

A.7.1 DFT in Dimension

A.7.2 Properties of the Unitary Matrix ,

A.7.3 Circulant Matrices and the DFT,

A.7.4 The Case

A.7.5 The Periodogram

A.8 Discrete Cosine Transform (DCT)

A.8.1 One‐dimensional Case

A.8.2 The Case

A.8.3 Indexing for the Discrete Fourier and Cosine Transforms

A.9 Periodic Approximations to Sequences

A.10 Structured Matrices in Dimension

A.11 Matrix Approximations for an Inverse Covariance Matrix

A.11.1 The Inverse Covariance Function

A.11.2 The Toeplitz Approximation to

A.11.3 The Circulant Approximation to

A.11.4 The Folded Circulant Approximation to

A.11.5 Comments on the Approximations

A.11.6 Sparsity

A.12 Maximum Likelihood Estimation

A.12.1 General Considerations

A.12.2 The Multivariate Normal Distribution and the Spatial Linear Model

A.12.3 Change of Variables

A.12.4 Profile Log‐likelihood

A.12.5 Confidence Intervals

A.12.6 Linked Parameterization

A.12.7 Model Choice

A.13 Bias in Maximum Likelihood Estimation. A.13.1 A General Result

A.13.2 The Spatial Linear Model

Appendix B A Brief History of the Spatial Linear Model and the Gaussian Process Approach

B.1 Introduction

B.2 Matheron and Watson

B.3 Geostatistics at Leeds 1977–1987. B.3.1 Courses, Publications, Early Dissemination

B.3.2 Numerical Problems with Maximum Likelihood

B.4 Frequentist vs. Bayesian Inference

References and Author Index

Index. a

b

c

d

e

f

g

h

i

k

l

m

n

o

p

q

r

s

t

u

v

w

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

WILEY SERIES IN PROBABILITY AND STATISTICS

Established by Walter A. Shewhart and Samuel S. Wilks

.....

Figure 5.1 Bauxite data: Bubble plot and directional semivariograms.

Figure 5.2 Elevation data: Bubble plot and directional semivariograms.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Spatial Analysis
Подняться наверх