Foundations of Quantum Field Theory

Foundations of Quantum Field Theory
Автор книги: id книги: 1911087     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 5140,79 руб.     (46,91$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Физика Правообладатель и/или издательство: Ingram Дата добавления в каталог КнигаЛит: ISBN: 9789811221941 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Based on a two-semester course held at the University of Heidelberg, Germany, this book provides an adequate resource for the lecturer and the student. The contents are primarily aimed at graduate students who wish to learn about the fundamental concepts behind constructing a Relativistic Quantum Theory of particles and fields. So it provides a comprehensive foundation for the extension to Quantum Chromodynamics and Weak Interactions, that are not included in this book.<b>Contents:</b> <ul><li>The Principles of Quantum Physics</li><li>Lorentz Group and Hilbert Space</li><li>Search for a Relativistic Wave Equation</li><li>The Dirac Equation</li><li>The Free Maxwell Field</li><li>Quantum Mechanics of Dirac Particles</li><li>Second Quantization</li><li>Canonical Quantization</li><li>Global Symmetries and Conservation Laws</li><li>The Scattering Matrix</li><li>Perturbation Theory</li><li>Parametric Representation of a General Diagram</li><li>Functional Methods</li><li>Dyson&#x2013;Schwinger Equation</li><li>Regularization of Feynman Diagrams</li><li>Renormalization</li><li>Broken Scale Invariance and Callan&#x2013;Symanzik Equation</li><li>Renormalization Group</li><li>Spontaneous Symmetry Breaking</li><li>Effective Potentials</li></ul><br><b>Readership:</b> Graduate students and researchers interested in quantum field theory. Hilbert-Space;Renormalization;Callan-Symanzik;Renormalization Group;Effective Potentials0<b>Key Features:</b><ul><li>Emphasis on the Lorentz Hilbert-space behind the second quantization</li><li>Extensive discussion on Callan-Symanzik (CS) equation and asymptotics</li><li>Special perspective on the Renormalization Group (RG) and its link to CS equation</li></ul>

Оглавление

Klaus D Rothe. Foundations of Quantum Field Theory

PREFACE

Chapter 1. The Principles of Quantum Physics

1.1Principles shared by QM and QFT

1.2Principles of NRQM not shared by QFT

Group-property

Boosts

Chapter 2. Lorentz Group and Hilbert Space

2.1Defining properties of Lorentz transformations

2.2Classification of Lorentz transformations

General form of a Lorentz boosts

2.3Lie algebra of the Lorentz group

2.4Finite irreducible representation of

2.5Transformation properties of massive 1-particle states

2.6Transformation properties of zero-mass 1-particle states

Chapter 3. Search for a Relativistic Wave Equation

3.1A relativistic Schrödinger equation

3.2Difficulties with the wave equation

Probability interpretation

3.3The Klein–Gordon equation

3.4KG equation in the presence of an electromagnetic field

Negative energy solutions and antiparticles

Probability interpretation

Chapter 4. The Dirac Equation

4.1Dirac spinors in the Dirac and Weyl representations

Dirac equation: historical derivation

Tracelessness

Dimensionality

Minimal dimension

Dirac spinors in the Weyl representation

4.2Properties of the Dirac spinors

4.3Properties of the γ-matrices

4.4Zero-mass, spin = fields

Chirality

Solution of Weyl equations

4.5Majorana fermions

Majorana representation

Majorana spinors

Self-conjugate Dirac fields

Chapter 5. The Free Maxwell Field

5.1The radiation field in the Lorentz gauge

5.2The radiation field in the Coulomb gauge

Chapter 6. Quantum Mechanics of Dirac Particles

6.1Probability interpretation

6.2Non-relativistic limit

6.3Negative-energy solutions and localization

6.4The Klein Paradox

6.5Foldy–Wouthuysen Transformation

Chapter 7. Second Quantization

7.1Fock-space representation of fields

7.2Commutation relations

7.3P, C, T from equations of motion

7.4P, C, T in second quantization

Chapter 8. Canonical Quantization

8.1Lagrangian formulation and Euler–Lagrange equations

8.2Canonical quantization: unconstrained systems

8.3Canonical quantization: constrained systems

Dirac algorithm

8.4QED as a constrained system

Gauge transformations

Dirac brackets

Chapter 9. Global Symmetries and Conservation Laws

9.1Noether’s Theorem

9.2Internal symmetries

9.3Translational invariance

9.4Lorentz transformations

Chapter 10. The Scattering Matrix

10.1The S-matrix and T-matrix

10.2Differential cross-section

10.3LSZ reduction formula

Chapter 11. Perturbation Theory

11.1Interaction picture and U-matrix

11.2Interaction picture representation of Green functions

Some formal considerations

11.3Wick theorems

Wick theorem No. 1

Corollary to Wick theorem No. 1

Wick theorem No. 2

Corollary to Wick’s theorem No. 2

Wick theorem No. 3

11.42-point functions

Basic definitions

Fourier representations

Causality

Table of 2-point functions of free scalar, fermion and Maxwell fields

(I) Scalar field

(II) Fermion field

(III) Gauge-field in Coulomb gauge

11.5Feynman Diagrams for QED

Diagrammatic representation of V

Cancellation of vacuum diagrams

Second order Fermion propagator of QED

Second order photon propagatorof QED

Topologically equivalent diagrams

11.6Furry’s theorem

Furry’s theorem

11.7Going over to momentum space

Electron and photon 2-point function in momentum space

11.8Momentum space Feynman rules for QED

11.9Moeller scattering

Moeller scattering in space-time

The T-matrix

11.10The Moeller differential cross-section

Differential cross-section in center of mass (cm)-system

11.11Compton scattering

Chapter 12. Parametric Representation of a General Diagram

12.1Cutting rules for a general diagram

12.2An alternative approach to cutting rules

12.34-point function in the ladder approximation

Chapter 13. Functional Methods

13.1The Generating Functional

13.2Schwinger’s Construction of [j]

The interacting case

13.3Feynman Path-Integral

Path-integral representation of free propagation kernel in QM

Checking the use of the completeness relation

Semi-classical derivation for the free-particle kernel

Path integral representation of kernel with interaction

13.4Path-integral representation of correlators in QM

Digression: Harmonic oscillator

Back to (13.32)

13.5Feynman path-integral representation in QFT

Perturbation Theory recovered

13.6Path-Integral for Grassman-valued fields

Grassmann Algebra

Integration over Grassmann variables

Differentiation of Grassmann Variables

13.7Extension to Field Theory

13.8Mathews—Salam representation of QED generating functional

13.9Faddeev–Popov quantization andα-gauges

Aμ-propagator in α-gauges

Chapter 14. Dyson–Schwinger Equation

14.1Classification of Feynman Diagrams

Tree graphs

Connected diagrams

1-particle irreducible (1PI) diagrams

14.2Basic building blocks of QED

14.3Dyson–Schwinger Equations

Chapter 15. Regularization of Feynman Diagrams

15.1Pauli–Villars and dimensional regularization

Pauli–Villars regularization

Dimensional regularization

15.1.1Electron self-energy

Pauli–Villars regularization

Dimensional regularization

15.1.2Photon vacuum polarization

Pauli–Villars regularization

Dimensional regularization

15.1.3The vertex function

Pauli–Villars regularization

Dimensional regularization

Chapter 16. Renormalization

16.1The principles of renormalization

16.2Renormalizability of QED

16.2.1Fermion 2-point function

16.2.2Photon 2-point function

16.2.3Vertex function

16.3Ward–Takahashi Identity and overlapping divergences

Renormalized Ward–Takahashi identity

The problem of overlapping divergences in QED

16.41-loop renormalization in QED

ComputationZA and πren(k2)

Computation of Z1 and Γμ(p, p′)ren

16.5Composite operators and Wilson expansion

16.6Criteria for renormalizability

Theorem

16.7Taylor subtraction

Renormalization by Taylor subtraction

16.8Bogoliubov’s recursion formula

16.9Overlapping divergences

16.10Dispersion relations: a brief view

Källen–Lehmann representation

The analytic approach

Cutcosky rules

Chapter 17. Broken Scale Invariance and Callan–Symanzik Equation

17.1Scale transformations

17.2Unrenormalized Ward identities of broken scale invariance

17.3Broken scale invariance and renormalized Ward identities

17.4Weinberg’s Theorem

17.5 Solution of CS equation in the deep euclidean region

17.6Asymptotic behaviour of Γ and zeros of the β-function

17.7Perturbative calculation of β(g) and γ(g) in ϕ4 theory

ϕ4 beta-function

17.8QEDβ-function and anomalous dimension

17.9QEDβ-function and leading log summation

17.10Infrared fix point of QED and screening of charge

Chapter 18. Renormalization Group

18.1The Renormalization Group equation

Explicit expressions to order

18.2Asymptotic solution of RG equation

Chapter 19. Spontaneous Symmetry Breaking

19.1The basic idea

19.2More about spontaneous symmetry breaking

19.3The Goldstone Theorem

Goldstone Theorem:

19.4Realization of Goldstone Theorem in QFT

Evasion of the Goldstone Theorem

Chapter 20. Effective Potentials

20.1Generating functional of proper functions

Generating functional of proper Green Functions

20.2The effective potential

20.3The 1-loop effective potential ofϕ4-theory. 1-loop approximation

20.4WKB approach to the effective potential

20.5The effective potential and SSB

RG equation forVeff

Index

Отрывок из книги

Foundations of Quantum Field Theory

ISSN: 1793-1436

.....

14.1Classification of Feynman Diagrams

14.2Basic building blocks of QED

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Foundations of Quantum Field Theory
Подняться наверх