Удивительная космология
Реклама. ООО «ЛитРес», ИНН: 7719571260.
Оглавление
Лев Шильник. Удивительная космология
Предисловие от издательства
Расстояния, версты, мили
Звездный паноптикум
Кое-что о здравом смысле
Кирпичи мироздания
Эхо Большого взрыва
Всеобъемлющая инфляция
И тьма пришла
Мнимое время Стивена Хокинга
Кольцо вокруг Солнца
Девять или десять?
Отрывок из книги
В старину люди жили на плоской Земле. Ничего удивительного в этом нет, ибо человеческому глазу земная поверхность и впрямь видится убегающей за горизонт бескрайней плоскостью, если, конечно, пренебречь локальными перепадами рельефа по высоте. Путешествуя по долинам и по взгорьям, купцы и солдаты Древнего мира могли на собственном опыте удостовериться, что поверхность Земли представляет собой огромный плоский блин.
Однако считать наших далеких предков наивными простаками было бы опрометчиво и недальновидно. Просто наука в ту пору пока что барахталась в пеленках. Рыхлую груду фактов, где точные наблюдения и поразительные догадки перемежались с чудовищными заблуждениями, еще предстояло систематизировать. Отделение зерен от плевел – совсем не такая легкая задача, как может показаться на первый взгляд.
.....
А нельзя ли вычислить не относительное, а абсолютное расстояние хотя бы до некоторых небесных тел? Если не считать Птолемей полулегендарного Аристарха Самосского, якобы построившего гелиоцентрическую модель за полторы тысячи лет до Коперника, впервые измерением расстояния до Луны озаботился выдающийся астроном античности Гиппарх, живший во II веке до н. э., почти за 300 лет до Птолемея. Вспомним, что во время лунных затмений на диске Луны наблюдается контур земной тени, который всегда (при любых затмениях) представляет собой окружность. По изгибу края земной тени можно судить о величине ее поперечного сечения по сравнению с размерами Луны. Если допустить, что Солнце находится от Земли гораздо дальше Луны, можно рассчитать, как далеко от Земли должна быть расположена Луна, чтобы тень Земли уменьшилась до наблюдаемых размеров (размеры Земли нам известны). Гиппарх пришел к выводу, что расстояние до Луны в 30 раз больше земного диаметра; если принять величину диаметра нашей планеты, найденную Эратосфеном (12 800 километров), то расстояние до Луны составит 384 000 километров.
Это совершенно блистательный результат: по современным оценкам, среднее расстояние между Луной и Землей составляет 384 400 километров, меняясь от 356 610 километров в перигее (точке минимального удаления) до 406 700 километров в апогее (точке максимального удаления). И поэтому я готов согласиться с ревизионерами ортодоксальной исторической версии, которые настаивают на том, что измерения такого уровня точности не могли быть выполнены раньше эпохи Возрождения. Более того, даже в XVII столетии подобная точность была архисложной задачей. Совершенно непонятно, каким образом древние греки умудрялись точно измерять углы между небесными телами при помощи тех примитивных инструментов, которые имелись в их распоряжении. Я уже не говорю о том, что для точных астрономических наблюдений совершенно необходимы часы с секундной стрелкой, тогда как изобретенные в Европе на излете Средних веков механические часы долгое время не имели даже минутной. Между тем нам рассказывают, что Гиппарх с умопомрачительной точностью рассчитал продолжительность лунного месяца – 29 суток 12 часов 44 минуты 2,5 секунды (действительная величина – 29 суток 12 часов 44 минуты 3,5 секунды). Как он сумел ошибиться всего на одну секунду (и как считал половинки секунд), не имея механических часов, история умалчивает.
.....