Multi-Processor System-on-Chip 1

Multi-Processor System-on-Chip 1
Автор книги: id книги: 2019601     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 15938,7 руб.     (156,75$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Программы Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119818281 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

A Multi-Processor System-on-Chip (MPSoC) is the key component for complex applications. These applications put huge pressure on memory, communication devices and computing units. This book, presented in two volumes – Architectures and Applications – therefore celebrates the 20th anniversary of MPSoC, an interdisciplinary forum that focuses on multi-core and multi-processor hardware and software systems. It is this interdisciplinarity which has led to MPSoC bringing together experts in these fields from around the world, over the last two decades. <p><i>Multi-Processor System-on-Chip 1</b> covers the key components of MPSoC: processors, memory, interconnect and interfaces. It describes advance features of these components and technologies to build efficient MPSoC architectures. All the main components are detailed: use of memory and their technology, communication support and consistency, and specific processor architectures for general purposes or for dedicated applications.

Оглавление

Liliana Andrade. Multi-Processor System-on-Chip 1

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Multi-Processor System-on-Chip 1. Architectures

Foreword

Acknowledgments

1. Processors for the Internet of Things

1.1. Introduction

1.2. Versatile processors for low-power IoT edge devices. 1.2.1.Control processing, DSP and machine learning

1.2.2.Configurability and extensibility

1.3. Machine learning inference

1.3.1.Requirements for low/mid-end machine learning inference

1.3.1.1. Neural network processing

1.3.1.2. Implementation requirements

1.3.2.Processor capabilities for low-power machine learning inference

1.3.3.A software library for machine learning inference

1.3.4.Example machine learning applications and benchmarks

1.4. Conclusion

1.5. References

2. A Qualitative Approach to Many-core Architecture

2.1. Introduction

2.2. Motivations and context. 2.2.1.Many-core processors

2.2.2.Machine learning inference

2.2.3.Application requirements

2.3. The MPPA3 many-core processor. 2.3.1.Global architecture

2.3.2.Compute cluster

2.3.3.VLIW core

2.3.4.Coprocessor

2.4. The MPPA3 software environments. 2.4.1.High-performance computing

2.4.2.KaNN code generator

2.4.3.High-integrity computing

2.5. Conclusion

2.6. References

3. The Plural Many-core Architecture – High Performance at Low Power

3.1. Introduction

3.2. Related works

3.3. Plural many-core architecture

3.4. Plural programming model

3.5. Plural hardware scheduler/synchronizer

3.6. Plural networks-on-chip

3.6.1.Scheduler NoC

3.6.2.Shared memory NoC

3.7. Hardware and software accelerators for the Plural architecture

3.8. Plural system software

3.9. Plural software development tools

3.10. Matrix multiplication algorithm on the Plural architecture

3.11. Conclusion

3.12. References

4. ASIP-Based Multi-Processor Systems for an Efficient Implementation of CNNs

4.1. Introduction

4.2. Related works

4.3. ASIP architecture

4.4. Single-core scaling

4.5. MPSoC overview

4.6. NoC parameter exploration

4.7. Summary and conclusion

4.8. References

5. Tackling the MPSoC Data Locality Challenge

5.1. Motivation

5.2. MPSoC target platform

5.3. Related work

5.4. Coherence-on-demand: region-based cache coherence

5.4.1.RBCC versus global coherence

5.4.2.OS extensions for coherence-on-demand

5.4.3.Coherency region manager

5.4.4.Experimental evaluations

5.4.5.RBCC and data placement

5.5. Near-memory acceleration

5.5.1.Near-memory synchronization accelerator

5.5.2.Near-memory queue management accelerator

5.5.3.Near-memory graph copy accelerator

5.5.4.Near-cache accelerator

5.6. The big picture

5.7. Conclusion

5.8. Acknowledgments

5.9. References

6. mMPU: Building a Memristor-based General-purpose In-memory Computation Architecture

6.1. Introduction

6.2. MAGIC NOR gate

6.3. In-memory algorithms for latency reduction

6.4. Synthesis and in-memory mapping methods

6.4.1.SIMPLE

6.4.2.SIMPLER

6.5. Designing the memory controller

6.6. Conclusion

6.7. References

7. Removing Load/Store Helpers in Dynamic Binary Translation

7.1. Introduction

7.2. Emulating memory accesses

7.3. Design of our solution

7.4. Implementation

7.4.1.Kernel module

7.4.2.Dynamic binary translation

7.4.3.Optimizing our slow path

7.5. Evaluation

7.5.1. QEMUemulation performance analysis

7.5.2.Our performance overview

7.5.3.Optimized slow path

7.6. Related works

7.7. Conclusion

7.8. References

8. Study and Comparison of Hardware Methods for Distributing Memory Bank Accesses in Many-core Architectures

8.1. Introduction. 8.1.1.Context

8.1.2.MPSoC architecture

8.1.3.Interconnect

8.2. Basics on banked memory. 8.2.1.Banked memory

8.2.2.Memory bank conflict and granularity

8.2.3.Efficient use of memory banks: interleaving

8.2.3.1. Access patterns

8.2.3.1.1. Random access pattern

8.2.3.1.2. Sequential access pattern

8.2.3.1.3. Stride access pattern

8.3. Overview of software approaches

8.3.1.Padding

8.3.2.Static scheduling of memory accesses

8.3.3.The need for hardware approaches

8.4. Hardware approaches. 8.4.1.Prime modulus indexing

8.4.2.Interleaving schemes using hash functions

8.4.2.1. XOR scheme

8.4.2.2. PRIM – pseudo-randomly interleaved memory

8.4.2.2.1. How it works

8.4.2.3. PRIM example – Intel LLC Complex Addressing

8.5. Modeling and experimenting

8.5.1.Simulator implementation

8.5.2.Implementation of the Kalray MPPA cluster interconnect

8.5.3.Objectives and method

8.5.4.Results and discussion. 8.5.4.1. Mapping MOD 16

8.5.4.2. Mapping MOD 17

8.5.4.3. Mapping PRIM 47

8.5.4.4. Addition of memory banks

8.5.4.5. Access reordering

8.5.4.6. Combination of access reordering and addition of memory banks

8.5.4.7. Discussion

8.6. Conclusion

8.7. References

9. Network-on-Chip (NoC): The Technology that Enabled Multi-processor Systems-on-Chip (MPSoCs)

9.1. History: transition from buses and crossbars to NoCs

9.1.1.NoC architecture

9.1.1.1. NoC layers

9.1.1.1.1. NoC layered approach benefits

9.1.1.2. NoC modularity and hierarchical architecture

9.1.1.3. NoC trade-offs

9.1.2.Extending the bus comparison to crossbars

9.1.3.Bus, crossbar and NoC comparison summary and conclusion

9.2. NoC configurability

9.2.1.Human-guided design flow

9.2.2.Physical placement awareness and NoC architecture design

9.3. System-level services

9.3.1.Quality-of-service (QoS) and arbitration

9.3.2.Hardware debug and performance analysis

9.3.3.Functional safety and security. 9.3.3.1. NoC functionality, failure modes and safety mechanisms

9.3.3.1.1. NoC functional safety analysis and FMEDA automation

9.3.3.2. NoC contributions to system-level security

9.4. Hardware cache coherence

9.4.1.NoC protocols, semantics and messaging

9.5. Future NoC technology developments

9.5.1.Topology synthesis and floorplan awareness

9.5.2.Advanced resilience and functional safety for autonomous vehicles

9.5.3.Alternatives to von Neumann architectures for SoCs

9.5.3.1. Massively parallel AI/machine learning architectures

9.5.3.2. Hierarchical cache coherence

9.5.4.Chiplets and multi-die NoC connectivity

9.5.5.Runtime software automation

9.5.6.Instrumentation, diagnostics and analytics for performance, safety and security

9.6. Summary and conclusion

9.7. References

10. Minimum Energy Computing via Supply and Threshold Voltage Scaling

10.1. Introduction

10.2. Standard-cell-based memory for minimum energy computing

10.2.1.Overview of low-voltage on-chip memories. 10.2.1.1. Low-voltage SRAM

10.2.1.2. Standard-cell-based memory (SCM)

10.2.2.Design strategy for area- and energy-efficient SCMs

10.2.2.1. Architectural-level design strategy

10.2.2.2. Physical placement optimization

10.2.2.3. Cell-level optimization

10.2.3.Hybrid memory design towards energy- and area-efficient memory systems

10.2.4.Body biasing as an alternative to power gating

10.3. Minimum energy point tracking

10.3.1.Basic theory. 10.3.1.1. Necessary conditions for minimum energy computing

10.3.1.2. Sub- and near-threshold regions

10.3.1.3. Super-threshold region

10.3.2.Algorithms and implementation

10.3.3.OS-based approach to minimum energy point tracking

10.4. Conclusion

10.5. Acknowledgments

10.6. References

11. Maintaining Communication Consistency During Task Migrations in Heterogeneous Reconfigurable Devices

11.1. Introduction. 11.1.1.Reconfigurable architectures

11.1.2.Contribution

11.2. Background

11.2.1.Definitions

11.2.1.1. Hardware context switch

11.2.1.2. Hardware task context

11.2.1.3. Communication channel

11.2.2.Problem scenario and technical challenges

11.3. Related works. 11.3.1.Hardware context switch

11.3.2.Communication management

11.4. Proposed communication methodology in hardware context switching

11.5. Implementation of the communication management on reconfigurable computing architectures

11.5.1.Reconfigurable channels in FIFO

11.5.2.Communication infrastructure

11.6. Experimental results. 11.6.1.Setup

11.6.2.Experiment scenario

11.6.3.Resource overhead

11.6.4.Impact on the total execution time

11.6.5.Impact on the context extract and restore time

11.6.6.System responsiveness to context switch requests

11.6.7.Hardware task migration between heterogeneous FPGAs

11.7. Conclusion

11.8. References

List of Authors

Author Biographies

Index. A

B, C

D

E, F

G, H

I

L

M

N

P

Q, R

S

T, V

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

To my parents, sisters and husband, the loves and pillars of my life.

.....

After selecting the right processor, the next question is how to arrive at an efficient software implementation of the targeted machine learning inference application. For this purpose, we present a library of reusable software modules to show how these are implemented efficiently on the ARC EM9D processor.

Table 1.2. Supported kernels in the embARC MLI library

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Multi-Processor System-on-Chip 1
Подняться наверх