Multi-Processor System-on-Chip 2

Multi-Processor System-on-Chip 2
Автор книги: id книги: 2043784     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 15938,7 руб.     (156,75$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Зарубежная компьютерная литература Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119818403 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

A Multi-Processor System-on-Chip (MPSoC) is the key component for complex applications. These applications put huge pressure on memory, communication devices and computing units. This book, presented in two volumes – Architectures and Applications – therefore celebrates the 20th anniversary of MPSoC, an interdisciplinary forum that focuses on multi-core and multi-processor hardware and software systems. It is this interdisciplinarity which has led to MPSoC bringing together experts in these fields from around the world, over the last two decades. <p><i>Multi-Processor System-on-Chip 2</i> covers application-specific MPSoC design, including compilers and architecture exploration. This second volume describes optimization methods, tools to optimize and port specific applications on MPSoC architectures. Details on compilation, power consumption and wireless communication are also presented, as well as examples of modeling frameworks and CAD tools. Explanations of specific platforms for automotive and real-time computing are also included.

Оглавление

Liliana Andrade. Multi-Processor System-on-Chip 2

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Multi-Processor System-on-Chip 2. Applications

Foreword

Acknowledgments

1. From Challenges to Hardware Requirements for Wireless Communications Reaching 6G

1.1. Introduction

1.2. Breadth of workloads

1.2.1. Vision, trends and applications

1.2.2. Standard specifications

1.2.2.1. Processing deadline variability

1.2.2.2. Data throughput variability

1.2.2.3. Specification summary

1.2.3. Outcome of workloads

1.3. GFDM algorithm breakdown

1.3.1. Equation

1.3.2. Dataflow processing graph and matrix representation

1.3.3. Pseudo-code

1.4. Algorithm precision requirements and considerations

1.5. Implementation

1.5.1. Implementation considerations

1.5.2. Design space exploration

1.5.3. Measurements for low-end and high-end use cases

1.6. Conclusion

1.7. Acknowledgments

1.8. References

2. Towards Tbit/s Wireless Communication Baseband Processing: When Shannon meets Moore

2.1. Introduction

2.2. Role of microelectronics

2.3. Towards 1 Tbit/s throughput decoders

2.3.1. Turbo decoder

2.3.2. LDPC decoder

2.3.3. Polar decoder

2.4. Conclusion

2.5. Acknowledgments

2.6. References

3. Automation for Industry 4.0 by using Secure LoRaWAN Edge Gateways

3.1. Introduction

3.2. Security in IIoT

3.3. LoRaWAN security in IIoT

3.4. Threat model

3.4.1. LoRaWAN attack model

3.4.2. IIoT node attack model

3.5. Trusted boot chain with STM32MP1

3.5.1. Trust base of node

3.5.2. Trusted firmware in STM32MP1

3.5.3. Trusted execution environments and OP-TEE

3.5.4. OP-TEE scheduling considerations

3.5.5. OP-TEE memory management

3.5.6. OP-TEE client API

3.5.7. TEE internal core API

3.5.8. Root and chain of trust

3.5.9. Hardware unique key

3.5.10. Secure clock

3.5.11. Cryptographic operations

3.6. LoRaWAN gateway with STM32MP1

3.7. Discussion and future scope

3.8. Acknowledgments

3.9. References

4. Accelerating Virtualized Distributed NVMe Storage in Hardware

4.1. Introduction

4.1.1. Virtualization and traditional hypervisors

4.1.2. Hyperconverged versus disaggregated cloud architectures

4.1.2.1. Degree of resource virtualization

4.1.2.2. Scalability of disaggregation and HCI

4.1.2.3. Management software

4.1.3. NVMe flash storage

4.2. Motivation: NVMe storage for the cloud

4.2.1. Motivation for a new hypervisor

4.2.2. Motivation for accelerating disaggregated storage

4.3. Design

4.3.1. Optimizing the hypervisor I/O operations

4.3.1.1. Design of the NexVisor hypervisor

4.3.2. Design of accelerated disaggregated storage

4.3.2.1. Virtualization of physical storage drives

4.3.2.2. On-demand virtual disk management

4.3.2.3. Offloaded virtual disk replication

4.3.2.4. Offloaded virtual disk copy

4.3.2.5. Offloaded virtual disk snapshot

4.3.2.6. Networked protocol. 4.3.2.6.1. ATA over Ethernet (AoE)

4.3.2.6.2. Networked storage operations

4.3.2.7. Storage virtualization

4.3.2.7.1. LUN table

4.3.2.7.2. Virtual-to-physical translation table structure

4.3.2.7.3. Dirty extent bitmap

4.4. Implementation

4.4.1. The NexVisor platform

4.4.2. Accelerated disaggregated storage

4.4.2.1. Hardware specification

4.4.2.2. Architecture

4.4.2.3. Storage node

4.5. Results

4.5.1. Sequential reads

4.5.2. Sequential writes

4.5.3. Sequential reads on one NVMe drive

4.5.4. Network performance

4.6. Conclusion

4.7. References

5. Modular and Open Platform for Future Automotive Computing Environment

5.1. Introduction

5.2. Outline of this approach

5.2.1. Centralized computation, distributed data

5.2.2. Modularity and heterogeneity

5.2.2.1. Modularity and heterogeneity at the hardware level

5.2.2.2. Modularity and heterogeneity at the software level

5.2.3. Tools for specification, configuration and integration

5.3. Results

5.3.1. Hardware platform

5.3.1.1. Physical computing unit

5.3.1.2. Physical interface unit

5.3.1.3. Network ETH/TSN

5.3.2. FACE SW architecture. 5.3.2.1. Layered stack structure

5.3.2.1.1. Board support package

5.3.2.1.2. Hypervisor

5.3.2.1.3. Operating system

5.3.2.1.4. Middleware

5.3.2.1.5. The application

5.3.2.2. Virtual prototyping framework

5.3.3. FACE Tool Suite

5.3.3.1. The functional architecture modeling feature

5.3.3.2. About model validation features

5.3.3.3. About the deployment feature

5.3.3.4. About the integration validation feature

5.4. Use case

5.4.1. Adaptive braking system

5.5. Conclusion

5.6. References

6. Post-Moore Datacenter Server Architecture

6.1. Introduction

6.2. Background: today’s blades are from the desktops of the 1980s

6.3. Memory-centric server design

6.4. Data management accelerators

6.5. Integrated network controllers

6.6. References

7. SESAM: A Comprehensive Framework for Cyber–Physical System Prototyping

7.1. Introduction

7.2. An overview of the SESAM platform

7.2.1. Multi-abstraction system prototyping

7.2.2. Assessing extra-functional system properties. 7.2.2.1. Power modeling

7.2.2.2. Reliability

7.3. VPSim: fast and easy virtual prototyping

7.3.1. Writing peripherals in Python

7.3.2. The ModelProvider interface

7.3.3. QEMU support

7.3.3.1. Integration methodology

7.3.3.2. Improvements to QEMU

7.3.4. Online simulation monitoring

7.3.5. Acceleration methods

7.4. Hybrid prototyping

7.4.1. Co-simulation mode

7.4.2. Co-emulation mode

7.4.3. Runtime performance analysis and debugging features

7.5. FMI for co-simulation

7.5.1. Functional mock-up interface

7.5.2. VPSim integration in FMI co-simulation

7.6. Conclusion

7.7. References

8. StaccatoLab: A Programming and Execution Model for Large-scale Dataflow Computing

8.1. Introduction

8.2. Static dataflow

8.2.1. Synchronous dataflow

8.2.2. Cyclo-static dataflow

8.2.3. Dataflow graph transformations

8.3. Dynamic dataflow

8.3.1. Data-dependent dataflow

8.3.2. Non-determinate dataflow

8.4. Dataflow execution models

8.4.1. A brief review of dataflow theory

8.4.2. The StaccatoLab execution model

8.5. StaccatoLab

8.5.1. Dataflow graph description and analysis

8.5.2. Verilog synthesis

8.6. Large-scale dataflow computing?

8.6.1. What kind of applications?

8.6.2. Why effective?

8.6.3. Why efficient?

8.7. Acknowledgments

8.8. References

9. Smart Cameras and MPSoCs

9.1. Introduction

9.2. Early VLSI video processors

9.3. Video signal processors

9.4. Accelerators

9.5. From VSP to MPSoC

9.6. Graphics processing units

9.7. Neural networks and tensor processing units

9.8. Conclusion

9.9. References

10. Software Compilation and Optimization Techniques for Heterogeneous Multi-core Platforms

10.1. Introduction

10.2. Dataflow modeling. 10.2.1. General concepts

10.2.2. Process networks

10.2.3. C for process networks

10.2.3.1. Channels

10.2.3.2. Processes

10.2.3.3. Parallelism types

10.3. Source-to-source-based compiler infrastructure

10.3.1. Design rationale

10.3.2. Implementation strategy

10.4. Software distribution

10.4.1. KPN analysis

10.4.2. Static KPN mapping

10.4.3. Hybrid KPN mapping

10.5. Results

10.5.1. Applications and experiences

10.5.2. Retargetability

10.6. Conclusion

10.7. References

List of Authors

Author Biographies

Index

A

B, C

D

E

F

G

H

I

L

M

N

O

P

Q, R

S

T

V

W

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

To my parents, sisters and husband, the loves and pillars of my life.

Liliana ANDRADE

.....

Figure 1.9 with a new set of coefficients that invert the first filtering, followed by DFT. Finally, after successful demodulation, the demodulated stream is compared with the reference and the error vector magnitude is measured.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Multi-Processor System-on-Chip 2
Подняться наверх